poj1655 Balancing Act求树的重心
Description
For example, consider the tree:
Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.
For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.
Input
Output
Sample Input
1
7
2 6
1 2
1 4
4 5
3 7
3 1
Sample Output
1 2 这是一个模板题,是点分治的基础。我们先随便把一个结点作为根,求出siz数组,siz[i]表示以i为根的子树的大小(dfs/bfs都可以,我就用bfs了),然后去掉结点i后的最大块的大小就是max(n-siz[i],i的所有儿子中的最大siz),这样就做好了。
program rrr(input,output);
type
etype=record
t,next:longint;
end;
var
e:array[..]of etype;
a,q,father,siz,f:array[..]of longint;
v:array[..]of boolean;
tt,i,j,n,x,y,cnt,h,t,ans,min:longint;
function max(a,b:longint):longint;
begin
if a>b then exit(a) else exit(b);
end;
procedure add(x,y:longint);
begin
inc(cnt);e[cnt].t:=y;e[cnt].next:=a[x];a[x]:=cnt;
end;
begin
assign(input,'r.in');assign(output,'r.out');reset(input);rewrite(output);
readln(tt);
for i:= to tt do
begin
readln(n);
for j:= to n do a[j]:=;cnt:=;
for j:= to n- do begin read(x,y);add(x,y);add(y,x); end;
fillchar(v,sizeof(v),false);
h:=;t:=;q[]:=;v[]:=true;
while h<t do
begin
inc(h);
j:=a[q[h]];
while j<> do
begin
if not v[e[j].t] then
begin
v[e[j].t]:=true;father[e[j].t]:=q[h];
inc(t);q[t]:=e[j].t;
end;
j:=e[j].next;
end;
end;
for j:= to n do siz[j]:=;
fillchar(f,sizeof(f),);min:=n;
for j:=n downto do
begin
t:=max(f[q[j]],n-siz[q[j]]);
if (t<min) or (t=min) and (q[j]<ans) then begin ans:=q[j];min:=t; end;
inc(siz[father[q[j]]],siz[q[j]]);
if siz[q[j]]>f[father[q[j]]] then f[father[q[j]]]:=siz[q[j]];
end;
if f[]<=min then begin ans:=;min:=f[]; end;
writeln(ans,' ',min);
end;
close(input);close(output);
end.
poj1655 Balancing Act求树的重心的更多相关文章
- poj1655 Balancing Act 找树的重心
http://poj.org/problem? id=1655 Balancing Act Time Limit: 1000MS Memory Limit: 65536K Total Submis ...
- poj 1655 Balancing Act 求树的重心【树形dp】
poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...
- POJ 1655 Balancing Act(求树的重心--树形DP)
题意:求树的重心的编号以及重心删除后得到的最大子树的节点个数size,假设size同样就选取编号最小的. 思路:随便选一个点把无根图转化成有根图.dfs一遍就可以dp出答案 //1348K 125MS ...
- POJ-1655 Balancing Act(树的重心)
Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the t ...
- POJ1655 Balancing Act (树的重心)
求树的重心的模板题,size[u]维护以u为根的子树大小,f[u]表示去掉u后的最大子树. 1 #include<cstdio> 2 #include<iostream> 3 ...
- POJ1655 Balancing Act(树的重心)
树的重心即树上某结点,删除该结点后形成的森林中包含结点最多的树的结点数最少. 一个DFS就OK了.. #include<cstdio> #include<cstring> #i ...
- POJ 1655 Balancing Act (求树的重心)【树形DP】(经典)
<题目链接> 题目大意:给你一棵树,任意去除某一个点后,树被分成了几个联通块,则该点的平衡值为所有分成的连通块中,点数最大的那个,问你:该树所有点中,平衡值最小的那个点是什么? 解题分析: ...
- Balancing Act(树的重心)
传送门 Balancing Act Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14070 Accepted: 593 ...
- POJ 1655 Balancing Act (树的重心,常规)
题意:求树的重心,若有多个重心,则输出编号较小者,及其子树中节点最多的数量. 思路: 树的重心:指的是一个点v,在删除点v后,其子树的节点数分别为:u1,u2....,设max(u)为其中的最大值,点 ...
随机推荐
- 【原创】user.id字段
odoo中User.ID 字段是用户登录表 res_users 中的字段,所以要关联某个用户或是判断某个用户,可以利用该字段. 例如:在某个 界面中的domain中,要求显示的是关联某用户的单子,则如 ...
- 成都Uber优步司机奖励政策(4月15日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- zookeeper 简单小节
1. ZooKeeper 是什么 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务.主要用来解决分布式集群中应用系统的一致性问题,它能提供基于类似于文件系统的目录节点树方式的数据存储 ...
- 强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods)
强化学习读书笔记 - 13 - 策略梯度方法(Policy Gradient Methods) 学习笔记: Reinforcement Learning: An Introduction, Richa ...
- 使用Photon引擎进行unity网络游戏开发(四)——Photon引擎实现网络游戏逻辑
使用Photon引擎进行unity网络游戏开发(四)--Photon引擎实现网络游戏逻辑 Photon PUN Unity 网络游戏开发 网络游戏逻辑处理与MasterClient 网络游戏逻辑处理: ...
- 天马行空DevOps-Dev平台建设概述
概述 DevOps(Development和Operations的组合词)是一组过程.方法与系统的统称,用于促进开发(应用程序/软件工程).技术运营和质量保障(QA)部门之间的沟通.协作与整合.它是一 ...
- shell基础 -- 基本语法
本文介绍一下 shell 的语法. 一.变量 在 shell 里,使用变量之前通常并不需要事先为他们做出声明,需要使用的时候直接创建就行了.默认情况下,所有变量都被看做字符串并以字符串来存储,即使它们 ...
- 拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题
参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原 ...
- dp算法之硬币找零问题
题目:硬币找零 题目介绍:现在有面值1.3.5元三种硬币无限个,问组成n元的硬币的最小数目? 分析:现在假设n=10,画出状态分布图: 硬币编号 硬币面值p 1 1 2 3 3 5 编号i/n总数j ...
- AJAX学习2
作者声明:本博客中所写的文章,都是博主自学过程的笔记,参考了很多的学习资料,学习资料和笔记会注明出处,所有的内容都以交流学习为主.有不正确的地方,欢迎批评指正. 本文学习内容:https://www. ...