题意很简单,给你若干个数字,你需要减去一些数字,使得在数列中的每个数字出现的次数不少于k次。

一开始我们都会想到是用DP,于是很快我们就可以得出状态为搞定前面i个数所需要花费的最小代价用f[i]表示。

接下来我们可以得到状态转移方程为f[i]=min(f[j]+sum[i]-sum[j]-(i-j)*a[j+1]);j的枚举范围为k到i-k。这是很容易理解的。

但是再看题目我们就会发现这个算法的时间复杂度为O(N^2),题目中N多大500000,根本无法承受。所以需要优化的说。

接下来要说的就是优化了,这个叫做斜率优化的说。我们假设当前要求f[i],那么对于前面的任意两个j1和j2(j1<j2),如果j2优于j1,那么一定满足f[j1]-f[j2]-sum[j1]+sum[j2]+j1*a[j1+1]-j2*a[j2+1]>i*(a[j1+1]-a[j2+1]);这样我们显然可以直接不考虑j1,因为a[j1+1]-a[j2+1]<=0,等式左边是常数,所以随着i的增加,这个等式一定是恒成立的。这是队首的优化。

同时对于每一次入队之前,对于队尾都有一个优化。那就是我们对于将要入队的那个元素和队尾的两个元素x,y(总共三个元素)顺序两两比较,有一种情况就是对于任意的i,只要y比x优,那么z就比y有,用公式表达就是dy(x,y)/dx(x,y)>=dy(y,z)/dx(y,z)。由于除法会有0的情况,所以在程序中间进行判断的时候要写成乘法的形式。(有负数,注意变号的问题)。那么在这种情况下面,y显然是无效的,我们可以直接从队尾把y删除。

你可能会问,队尾的删除操作是不是一定是必须的呢?一开始我也有这个问题,我认为这是不需要的,因为每次比较的都是两个元素,直到我交上去Wa出了翔。没有队尾的删除操作为什么是错的呢?其实是这样的,因为每次在队首的比较我们都是比较的两个元素来决定队首的元素是否有效,但是如果没有队尾的操作,那么队首的操作也是不正确的。因为x(设为队首第一个)在此时优于y(队首第二个),但是这并不能说明x优于队列中的每一个元素,这就是错误的原因。

下面是我的代码,如果你觉得和网上的神牛的代码长得很像的话我没有意见,因为我一开始是不会做,看着别人的代码才写出来的。

 #include <iostream>
#include <cstdio>
#include <cstring>
#define maxn 500500
typedef long long ll;
using namespace std; ll f[maxn],n,m,k,t,a[maxn],sum[maxn],Q[maxn],head,tail; ll dy(ll j1,ll j2)
{
return f[j1]-f[j2]-sum[j1]+sum[j2]+j1*a[j1+]-j2*a[j2+];
}
ll dx(ll j1,ll j2)
{
return a[j1+]-a[j2+];
} int main()
{
scanf("%I64d",&t);
while (t--)
{
scanf("%I64d%I64d",&n,&k);
sum[]=;
for (int i=; i<=n; i++) scanf("%I64d",&a[i]),sum[i]=sum[i-]+a[i];
head=tail=,Q[]=;
for (ll i=; i<=n; i++)
{
while (head<tail && dy(Q[head],Q[head+])>i*dx(Q[head],Q[head+])) head++;
ll j=Q[head],z=i-k+;
f[i]=f[j]+sum[i]-sum[j]-(i-j)*a[j+];
if (z>=k)
{
while (head<tail)
{
ll x=Q[tail-],y=Q[tail];
if (dy(x,y)*dx(y,z)>=dy(y,z)*dx(x,y)) tail--;
else break;
}
Q[++tail]=z;
}
}
printf("%I64d\n",f[n]);
}
return ;
}

下面这个是我自己写的,进行了一些常数的优化,但是时间依然是1s+,知道如何优化才能把时间优化到200ms左右,真是费解。有神牛如果知道了,求告诉我一声。

 #include <iostream>
#include <cstdio>
#include <cstring>
#define maxn 500500
typedef long long ll;
using namespace std; ll f[maxn],n,m,k,t,a[maxn],sum[maxn],Q[maxn],head,tail,pos[maxn],sy[maxn],yy[maxn],cx,cy; ll dy(ll j1,ll j2)
{
return sy[j2]-sy[j1];
}
ll dx(ll j1,ll j2)
{
return a[j1+]-a[j2+];
} int main()
{
scanf("%I64d",&t);
while (t--)
{
scanf("%I64d%I64d",&n,&k);
sum[]=;
for (int i=; i<=n; i++) scanf("%I64d",&a[i]),sum[i]=sum[i-]+a[i];
head=tail=,Q[]=,pos[]=n+;
for (ll i=; i<=n; i++)
{
while (head<tail && i>pos[head]) head++;
ll j=Q[head],z=i-k+;
f[i]=f[j]+sum[i]-sum[j]-(i-j)*a[j+];
if (z>=k)
{
while (head<tail)
{
if (dy(Q[tail],z)>=(pos[tail-]+)*dx(Q[tail],z)) tail--;
else break;
}
Q[++tail]=z;
cx=dx(Q[tail-],Q[tail]),cy=dy(Q[tail-],Q[tail]);
if (cx==)
{
if (cy>=) pos[tail-]=;
else pos[tail-]=n+;
}
else pos[tail-]=cy/cx;//直接保存当前队列中的数的最远的有效位置。不过好像在删除的时候要更新,不过我的没有更新了,不会影响答案。
}
yy[i]=f[i-]-f[i]-sum[i-]+sum[i]+(i-)*a[i]-i*a[i+];
sy[i]=sy[i-]+yy[i];//dy可以叠加,所以只要求和然后相减就可以了。
}
printf("%I64d\n",f[n]);
}
return ;
}

POJ3709_K-Anonymous Sequence的更多相关文章

  1. IIS FTP Server Anonymous Writeable Reinforcement, WEBDAV Anonymous Writeable Reinforcement(undone)

    目录 . 引言 . IIS 6.0 FTP匿名登录.匿名可写加固 . IIS 7.0 FTP匿名登录.匿名可写加固 . IIS >= 7.5 FTP匿名登录.匿名可写加固 . IIS 6.0 A ...

  2. Scala的Pattern Matching Anonymous Functions

    参考自http://stackoverflow.com/questions/19478244/how-does-a-case-anonymous-function-really-work-in-sca ...

  3. A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.

    原项目链接:https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/assignments/chatbot 一个使 ...

  4. OGG-Oracle同步Sequence

    一.需求,使用OGG同步软件,将Oracle 11g Sequence实时同步到19c新库中 参考文档 Implementing replication of cyclic sequences in ...

  5. oracle SEQUENCE 创建, 修改,删除

    oracle创建序列化: CREATE SEQUENCE seq_itv_collection            INCREMENT BY 1  -- 每次加几个              STA ...

  6. Oracle数据库自动备份SQL文本:Procedure存储过程,View视图,Function函数,Trigger触发器,Sequence序列号等

    功能:备份存储过程,视图,函数触发器,Sequence序列号等准备工作:--1.创建文件夹 :'E:/OracleBackUp/ProcBack';--文本存放的路径--2.执行:create or ...

  7. DG gap sequence修复一例

    环境:Oracle 11.2.0.4 DG 故障现象: 客户在备库告警日志中发现GAP sequence提示信息: Mon Nov 21 09:53:29 2016 Media Recovery Wa ...

  8. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  9. [LeetCode] Sequence Reconstruction 序列重建

    Check whether the original sequence org can be uniquely reconstructed from the sequences in seqs. Th ...

  10. [LeetCode] Binary Tree Longest Consecutive Sequence 二叉树最长连续序列

    Given a binary tree, find the length of the longest consecutive sequence path. The path refers to an ...

随机推荐

  1. 20155334 2016-2017-2《Java程序设计》课程总结

    20155334 2016-2017-2<Java程序设计>课程总结 1. 每周作业链接汇总 题目 主要内容 二维码 预备作业1 不知道所以然的第一次博客 预备作业2 有关之前的C语言的调 ...

  2. # 20155337 2017-2018-1 《信息安全系统设计基础》第二周课堂实践+myod

    20155337 2017-2018-1 <信息安全系统设计基础>第二周课堂实践+myod 因为在课上已经提交了四个实验,还欠缺最后一个实验,反省一下自己还是操作不熟练,平时在课下应该多多 ...

  3. 【转】CentOS下MySQL忘记root密码解决方法

    原文转自:http://www.cnblogs.com/sbaicl/articles/3132010.html 1.首先确认服务器出于安全的状态,也就是没有人能够任意地连接MySQL数据库. 因为在 ...

  4. MES与ERP的区别(转)

    MES和ERP有很大的不同,主要体现在以下几个方面: 1.管理的目标不同 ERP的重点在于财务,也就是从财务的角度出发来对企业的资源进行计划,相关的模块也是以财务为核心的展开,最终的管理数据也是集中到 ...

  5. python基础数据类型补充

    python_day_7 一. 今日主要内容: 1. 补充基础数据类型的相关知识点 str. join() 把列表变成字符串 列表不能再循环的时候删除. 因为索引会跟着改变 字典也不能直接循环删除.把 ...

  6. 移动端车牌识别/车牌OCR识别

    周末,小编约了朋友商场shopping. 开车进地下车库时,“滴”的一声,完成车牌录入:开车离开时,扫描二维码,输入车牌,完成停车收费.小编不禁感叹科技改变生活,人工智能给生活带来的便利. 车牌自动识 ...

  7. Jmeter使用HTTP代理服务器录制脚本

    使用Jmeter录制脚本通常使用Badboy工具录制或者Jmeter自带的HTTP代理服务器录制脚本,这里说一下使用HTTP代理服务器录制时遇到的问题. 1.  Jmeter安装 下载得到Jmeter ...

  8. 小白初识 - 归并排序(MergeSort)

    归并排序是一种典型的用分治的思想解决问题的排序方式. 它的原理就是:将一个数组从中间分成两半,对分开的两半再分成两半,直到最终分到最小的单位(即单个元素)的时候, 将已经分开的数据两两合并,并且在合并 ...

  9. 深入了解MySQL存储索引

    (一)关于存储引擎 创建合适的索引是SQL性能调优中最重要的技术之一.在学习创建索引之前,要先了解MySql的架构细节,包括在硬盘上面如何组织的,索引和内存用法和操作方式,以及存储引擎的差异如何影响到 ...

  10. 华为云分布式缓存服务DCS与开源服务差异对比

    华为云分布式缓存DCS提供单机.主备.集群等丰富的实例类型,满足用户高读写性能及快速数据访问的业务诉求.支持丰富的实例管理操作,帮助用户省去运维烦恼.用户可以聚焦于业务逻辑本身,而无需过多考虑部署.监 ...