题意:给出一个序列,删除一个连续的子串后使得剩下的平均值最小。

典型的01分数规划,令f(x)=(sum1[i]+sum2[j])/(i+j).sum1表示前缀和,sum2表示后缀和,那么我们就相当于求出f(x)的最小值。

令f(x)=y,化简则有(sum1[i]-i*y)+(sum2[j]-j*y)=0,我们二分y,找出满足这个式子的y的最小值。

根据这个式子可以把序列都减去一个y,这样就相当于求新序列的前缀和sum1[i]+sum2[j]>=0.

实际上就是求min(sum1[i]+sum2[j])>=0,转化一下就变成了求新序列的最大子串和的经典DP问题。

  1. # include <cstdio>
  2. # include <cstring>
  3. # include <cstdlib>
  4. # include <iostream>
  5. # include <vector>
  6. # include <queue>
  7. # include <stack>
  8. # include <map>
  9. # include <set>
  10. # include <cmath>
  11. # include <algorithm>
  12. using namespace std;
  13. # define lowbit(x) ((x)&(-x))
  14. # define pi acos(-1.0)
  15. # define eps 1e-
  16. # define MOD
  17. # define INF
  18. # define mem(a,b) memset(a,b,sizeof(a))
  19. # define FOR(i,a,n) for(int i=a; i<=n; ++i)
  20. # define FO(i,a,n) for(int i=a; i<n; ++i)
  21. # define bug puts("H");
  22. # define lch p<<,l,mid
  23. # define rch p<<|,mid+,r
  24. # define mp make_pair
  25. # define pb push_back
  26. typedef pair<int,int> PII;
  27. typedef vector<int> VI;
  28. # pragma comment(linker, "/STACK:1024000000,1024000000")
  29. typedef long long LL;
  30. int Scan() {
  31. int x=,f=;char ch=getchar();
  32. while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
  33. while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
  34. return x*f;
  35. }
  36. void Out(int a) {
  37. if(a<) {putchar('-'); a=-a;}
  38. if(a>=) Out(a/);
  39. putchar(a%+'');
  40. }
  41. const int N=;
  42. //Code begin...
  43.  
  44. int a[N], n;
  45. double b[N], dp[N], sum;
  46.  
  47. bool check(double x){
  48. sum=;
  49. FOR(i,,n) b[i]=a[i]-x, sum+=b[i];
  50. double res=-INF;
  51. FO(i,,n) {
  52. dp[i]=max(dp[i-]+b[i],b[i]);
  53. res=max(res,dp[i]);
  54. }
  55. return sum<=res;
  56. }
  57. int main ()
  58. {
  59. scanf("%d",&n);
  60. FOR(i,,n) scanf("%d",a+i);
  61. double l=, r=INF, mid;
  62. FOR(i,,) {
  63. mid=(l+r)/2.0;
  64. if (check(mid)) r=mid;
  65. else l=mid;
  66. }
  67. printf("%.3lf\n",mid);
  68. return ;
  69. }

luogu 2115 破坏(01分数规划)的更多相关文章

  1. luogu P1768 天路 |01分数规划+负环

    题目描述 言归正传,小X的梦中,他在西藏开了一家大型旅游公司,现在,他要为西藏的各个景点设计一组铁路线.但是,小X发现,来旅游的游客都很挑剔,他们乘火车在各个景点间游览,景点的趣味当然是不用说啦,关键 ...

  2. luogu 4377 Talent show 01分数规划+背包dp

    01分数规划+背包dp 将分式下面的部分向右边挪过去,通过二分答案验证, 注意二分答案中如果验证的mid是int那么l=mid+1,r=mid-1,double类型中r=mid,l=mid; 背包dp ...

  3. 洛谷P3778 [APIO2017]商旅——01分数规划

    题目:https://www.luogu.org/problemnew/show/P3778 转化有点技巧: 其实直接关注比率的上下两项,也就是盈利和时间: 通过暴枚和 floyd 可以处理出两两点间 ...

  4. [JSOI 2016] 最佳团体(树形背包+01分数规划)

    4753: [Jsoi2016]最佳团体 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2003  Solved: 790[Submit][Statu ...

  5. UVA1389 Hard Life (01分数规划+最大流)

    UVA1389 Hard Life (01分数规划+最大流) Luogu 题目描述略 题解时间 $ (\frac{\Sigma EdgeCount}{\Sigma PointCount})_{max} ...

  6. POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9703   Accepted: 3299 ...

  7. ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)

    [题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...

  8. POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)

    [题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...

  9. 【Earthquake, 2001 Open 】 0-1 分数规划

    71  奶牛施工队一场地震把约翰家园摧毁了,坚强的约翰决心重建家园.约翰已经修复了 N 个牧场,他需要再修复一些道路把它们连接起来.碰巧的是,奶牛们最近也成立了一个工程队,专门从事道路修复.而然,奶牛 ...

随机推荐

  1. set get方法诡异的空指针异常

    发现原来是我的bean没有实例化 我的一直都是这么实例化的: UserEntity userEntity = null;难怪每次用不了set方法 原来是没有实例化 实例化之后就能正常使用了 UserE ...

  2. Spring学习(一)-----Spring 模块详解

    官方下载链接:http://repo.spring.io/release/org/springframework/spring/ Spring 模块详解: Core 模块 spring-beans-3 ...

  3. Vue.js之常用指令

    vue常用指令 vue.js官方给自己的定义是数据模板引擎,并给出了一套渲染数据的指令.本文详细介绍vue.js的常用指令. 官网:点我 一.v-text.v-html v-text:用于绑定文本 v ...

  4. lua 中的 loadfile、dofile和require的调用

    文件 hello.lua print("hello") function say() print("hello world") end 1. 介绍: dofil ...

  5. 那些年安装Appium遇到的坑

      安装appium以及相关的总体记录   1 主要流程是参照这个来 https://www.cnblogs.com/wangyinghao/p/5780151.html 细节参考虫师的博客 http ...

  6. Springboot 配置实现定时任务

    善于思考,拥抱变化,才能拥有未来 在springboot项目中可以通过配置文件来实现定时任务的轮询,当然也可以将具体执行的corn表达式配置到数据库,实现动态从数据库获取. @Configuratio ...

  7. InTelliJ 字体调整

    Java IDE 工具InTelliJ 调整字体大小 1.File -> Settings 2.左上的搜索框中输入 font. 等待自动查找结果. 3.修改size 大小

  8. 生成dataset的几种方式

    1.常用的方式通过sparksession读取外部文件或者数据生成dataset(这里就不讲了)  注: 生成Row对象的方法提一下:RowFactory.create(x,y,z),取Row中的数据 ...

  9. day03 作业 and 周末作业

    请输出 name 变量对应的值中 "e" 所在索引位置? # name = "leX leNb"# num = 0# while num < len(na ...

  10. 动态语言的灵活性是把双刃剑 -- 以 Python 语言为例

    本文有些零碎,总题来说,包括两个问题:(1)可变对象(最常见的是list dict)被意外修改的问题,(2)对参数(parameter)的检查问题.这两个问题,本质都是因为动态语言(动态类型语言)的特 ...