【BZOJ3667】Rabin-Miller算法(Pollard_rho)

题面

呜,权限题,别问我是怎么做的(我肯定没有权限号啊)

第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数。你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime

第二,如果不是质数,输出它最大的质因子是哪个。

题解

\(Pollard\_rho\)的模板题,权限题什么的烦死了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline ll read()
{
RG ll x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll e,N,c;
ll Multi(ll a,ll b,ll MOD)
{
ll s=0;
while(b){if(b&1)s=(s+a)%MOD;a=(a+a)%MOD;b>>=1;}
return s;
}
ll fpow(ll a,ll b,ll MOD)
{
ll s=1;
while(b){if(b&1)s=Multi(s,a,MOD);a=Multi(a,a,MOD);b>>=1;}
return s;
}
bool Miller_Rabin(ll x)
{
if(x==2)return true;
for(int tim=10;tim;--tim)
{
ll a=rand()%(x-2)+2;
if(fpow(a,x-1,x)!=1)return false;
ll p=x-1;
while(!(p&1))
{
p>>=1;ll nw=fpow(a,p,x);
if(Multi(nw,nw,x)==1&&nw!=1&&nw!=x-1)return false;
}
}
return true;
}
ll Pollard_rho(ll n,int c)
{
ll i=0,k=2,x=rand()%(n-1)+1,y=x;
while(233)
{
++i;x=(Multi(x,x,n)+c)%n;
ll d=__gcd((y-x+n)%n,n);
if(d!=1&&d!=n)return d;
if(x==y)return n;
if(i==k)y=x,k<<=1;
}
}
vector<ll> fac;
void Fact(ll n,int c)
{
if(n==1)return;
if(Miller_Rabin(n)){fac.push_back(n);return;}
ll p=n;while(p>=n)p=Pollard_rho(n,c--);
Fact(p,c);Fact(n/p,c);
}
int main()
{
int T=read();
while(T--)
{
ll n=read();fac.clear();Fact(n,233);
sort(fac.begin(),fac.end());
if(fac.size()==1)puts("Prime");
else printf("%lld\n",fac[fac.size()-1]);
}
return 0;
}

【BZOJ3667】Rabin-Miller算法(Pollard_rho)的更多相关文章

  1. 【BZOJ-3667】Rabin_Miller算法 随机化判素数

    3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 983  Solved: 302[Submit][Status ...

  2. Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test

    POJ 1811 Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 32534   Accepted: 8 ...

  3. 【bzoj3667】Rabin-Miller算法

    3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1200  Solved: 363[Submit][Statu ...

  4. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  5. 模式字符串匹配问题(KMP算法)

    这两天又看了一遍<算法导论>上面的字符串匹配那一节,下面是实现的几个程序,可能有错误,仅供参考和交流. 关于详细的讲解,网上有很多,大多数算法及数据结构书中都应该有涉及,由于时间限制,在这 ...

  6. 数论知识总结——史诗大作(这是一个flag)

    1.快速幂 计算a^b的快速算法,例如,3^5,我们把5写成二进制101,3^5=3^1*1+3^2*2+3^4*1 ll fast(ll a,ll b){ll ans=;,a=mul(a,a)))a ...

  7. Leetcode #28. Implement strStr()

    Brute Force算法,时间复杂度 O(mn) def strStr(haystack, needle): m = len(haystack) n = len(needle) if n == 0: ...

  8. Mathematics:GCD & LCM Inverse(POJ 2429)

    根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...

  9. Google Interview University - 坚持完成这套学习手册,你就可以去 Google 面试了

    作者:Glowin链接:https://zhuanlan.zhihu.com/p/22881223来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 原文地址:Google ...

随机推荐

  1. 两个字段联合约束(mysql)

    联合约束:ALTER TABLE `lywl_provider_package` ADD unique(providerId,packCode) 给一个表建唯一约束

  2. Maven学习(十四)-----Maven 构建配置文件

    Maven 构建配置文件 什么是构建配置文件? 生成配置文件是一组可以用来设置或覆盖 Maven 构建配置值的默认值.使用生成配置文件,你可以针对不同的环境,如:生产V/S开发环境自定义构建. 配置文 ...

  3. 一个web应用的诞生(12)--再探首页

    就要面对本章的一个难点了,说是难点可能仅仅对于我来说,毕竟我是一个js渣,既然首页打算使用动态加载的形式,那么与后台交互的方式就要进行选择,目前比较流行的为RESTful的形式,关于RESTful的文 ...

  4. tomcat7以上的版本,400BadRequest

    出现此原因的解决办法其一,详情可见: https://www.cnblogs.com/dygrkf/p/9088370.html. 另一种解决方法,就是把url中不允许出现的字符编码,后台接收时再解码 ...

  5. Keil5的设置

    目录 编码格式 字体大小 代码颜色 编码格式 有时候用keil打开工程的时候,发现中文注释是乱码的格式,这是因为编码格式方式不对造成的.可以通过设置不同的编码方式来解决. 点击Edit->Con ...

  6. Python和Pycharm的安装

    目录 安装Python 安装Pycharm IDE 破解Pycharm 用Pycharm创建Python工程 安装Python 去Python官网下载Python软件,网址:https://www.p ...

  7. 原生android(二)——认识activity

    一.activity的生命周期 1.onCreate():在活动第一次被创建的时候调用,用来完成活动的初始化操作,如加载布局.绑定事件等 2.onStart():在活动由不可见变为可见时被调用 3.o ...

  8. 【Jmeter测试】使用Java请求进行Dubbo接口的测试

    如何构建一个Dubbo接口测试的通用框架(https://github.com/nitibu/jmeter-dubbo-test)​从上面的流程我们可以看出,测试类大致的一个结构: 使用json文件来 ...

  9. Digital Roots:高精度

    C - Digital Roots Description The digital root of a positive integer is found by summing the digits ...

  10. JQuery 异步提交数据

    类别添加   名称:  &nbsp 正在发送数据请求… <% dim strValue blnLogin = false; strValue = request.Form("t ...