【BZOJ3667】Rabin-Miller算法(Pollard_rho)
【BZOJ3667】Rabin-Miller算法(Pollard_rho)
题面
呜,权限题,别问我是怎么做的(我肯定没有权限号啊)
第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数。你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime
第二,如果不是质数,输出它最大的质因子是哪个。
题解
\(Pollard\_rho\)的模板题,权限题什么的烦死了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline ll read()
{
RG ll x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll e,N,c;
ll Multi(ll a,ll b,ll MOD)
{
ll s=0;
while(b){if(b&1)s=(s+a)%MOD;a=(a+a)%MOD;b>>=1;}
return s;
}
ll fpow(ll a,ll b,ll MOD)
{
ll s=1;
while(b){if(b&1)s=Multi(s,a,MOD);a=Multi(a,a,MOD);b>>=1;}
return s;
}
bool Miller_Rabin(ll x)
{
if(x==2)return true;
for(int tim=10;tim;--tim)
{
ll a=rand()%(x-2)+2;
if(fpow(a,x-1,x)!=1)return false;
ll p=x-1;
while(!(p&1))
{
p>>=1;ll nw=fpow(a,p,x);
if(Multi(nw,nw,x)==1&&nw!=1&&nw!=x-1)return false;
}
}
return true;
}
ll Pollard_rho(ll n,int c)
{
ll i=0,k=2,x=rand()%(n-1)+1,y=x;
while(233)
{
++i;x=(Multi(x,x,n)+c)%n;
ll d=__gcd((y-x+n)%n,n);
if(d!=1&&d!=n)return d;
if(x==y)return n;
if(i==k)y=x,k<<=1;
}
}
vector<ll> fac;
void Fact(ll n,int c)
{
if(n==1)return;
if(Miller_Rabin(n)){fac.push_back(n);return;}
ll p=n;while(p>=n)p=Pollard_rho(n,c--);
Fact(p,c);Fact(n/p,c);
}
int main()
{
int T=read();
while(T--)
{
ll n=read();fac.clear();Fact(n,233);
sort(fac.begin(),fac.end());
if(fac.size()==1)puts("Prime");
else printf("%lld\n",fac[fac.size()-1]);
}
return 0;
}
【BZOJ3667】Rabin-Miller算法(Pollard_rho)的更多相关文章
- 【BZOJ-3667】Rabin_Miller算法 随机化判素数
3667: Rabin-Miller算法 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 983 Solved: 302[Submit][Status ...
- Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test
POJ 1811 Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 32534 Accepted: 8 ...
- 【bzoj3667】Rabin-Miller算法
3667: Rabin-Miller算法 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 1200 Solved: 363[Submit][Statu ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- 模式字符串匹配问题(KMP算法)
这两天又看了一遍<算法导论>上面的字符串匹配那一节,下面是实现的几个程序,可能有错误,仅供参考和交流. 关于详细的讲解,网上有很多,大多数算法及数据结构书中都应该有涉及,由于时间限制,在这 ...
- 数论知识总结——史诗大作(这是一个flag)
1.快速幂 计算a^b的快速算法,例如,3^5,我们把5写成二进制101,3^5=3^1*1+3^2*2+3^4*1 ll fast(ll a,ll b){ll ans=;,a=mul(a,a)))a ...
- Leetcode #28. Implement strStr()
Brute Force算法,时间复杂度 O(mn) def strStr(haystack, needle): m = len(haystack) n = len(needle) if n == 0: ...
- Mathematics:GCD & LCM Inverse(POJ 2429)
根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...
- Google Interview University - 坚持完成这套学习手册,你就可以去 Google 面试了
作者:Glowin链接:https://zhuanlan.zhihu.com/p/22881223来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 原文地址:Google ...
随机推荐
- 面向忙碌开发者的 Android
面向忙碌开发者的 Android passiontim 关注 2016.11.19 21:41* 字数 4013 阅读 2967评论 2喜欢 92 面向忙碌开发者的 Android 视频教程(Tuts ...
- Spring学习(一)-----Spring 模块详解
官方下载链接:http://repo.spring.io/release/org/springframework/spring/ Spring 模块详解: Core 模块 spring-beans-3 ...
- Linux 防火墙设置(转)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...
- 人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型
人脸检测及识别python实现系列(5)——利用keras库训练人脸识别模型 经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了.CNN擅长图像处理,keras库的te ...
- java使用jacob将office文档转换为PDF格式
jacob 包下载地址: http://sourceforge.net/projects/jacob-project/ 下载后,将jacob 与 jacob-1.19-x64.dll放到安装jdk目录 ...
- Codeforces 552 E. Two Teams
E. Two Teams time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- 使用qemu启动dd制作的img镜像
1. 准备工作 应用场景 在需要单机取证时,需要在不影响对象业务的情况下进行取证或分析,可以使用dd 对目标服务器进行镜像,生成img文件,镜像可以通过winhex进行静态分析.但是想要动态分析服务器 ...
- 使用PYTHON解析Wireshark的PCAP文件
PYTHON首先要安装scapy模块 PY3的安装scapy-python3,使用PIP安装就好了,注意,PY3无法使用pyinstaller打包文件,PY2正常 PY2的安装scapy,比较麻烦 f ...
- 为phpStorm 配置PHP_CodeSniffer自动检查代码
通过composer 安装PHP_CodeSniffer : squizlabs/PHP_CodeSniffer gihub地址 composer global require "squiz ...
- 一个网页从输入URL到页面加载完的过程
过程概述 1.浏览器查找域名对应的IP地址 2.浏览器根据IP地址与服务器建立socket连接 3.浏览器与服务器通信:浏览器请求,服务器处理请求和响应 4.浏览器与服务器断开连接 具体过程 1.搜索 ...