mllib是老的api,里面的模型都是基于RDD的,模型使用的时候api也是有变化的(model这里是naiveBayes),
(1:在模型训练的时候是naiveBayes.run(data:
RDD[LabeledPoint])来训练的,run之后的返回值是一个NaiveBayesModel对象,就可以使用NaiveBayesModel.predict(testData:
RDD[Vector]): RDD[Double] 里面不仅可以传入一个RDD[Vector]
,里面还可以传入单个Vector,得到单个预测值,然后就可以调用save来进行保存了,具体的可以看官方文档API
(2:模型使用可以参考(1,模型的读取是使用load方法去读的

ml是新的API,ml包里面的模型是基于dataframe操作的
(1:在模型训练的时候是使用naiveBayes.fit(dataset: Dataset[]): NaiveBayesModel来训练模型的,返回值是一个naiveBayesModel,可以使用naiveBayesModel.transform(dataset: Dataset[]): DataFrame,进行模型的检验,然后再通过其他的方法来评估这个模型,
(2:模型的使用可以参考(1: 是使用transform来进行预测的,取预测值可以使用select来取值,使用select的时候可以使用“$”label””的形式来取值

训练的时候是使用的NaiveBayes,使用的时候使用naiveBayesModel

ml包里的模型训练代码请参考ml包里面的模型训练代码 ml包里面的模型的使用

mllib代码的使用会在稍后贴上:
mllib的建模使用代码:

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD class EmailClassification { }
object EmailClassification{
def main(args: Array[String]): Unit = {
val sc = getSparkCont()
//每一行都以一封邮件
val spam = sc.textFile("spam.txt");
val nomal = sc.textFile("normal.txt") //创建一个hashingTF实例来吧邮件文本映射为包含10000个特征的向量
val tf = new HashingTF()
//把邮件都被分割为单词,每个单词都被映射成一个向量
val spamFeatures = spam.map { email => tf.transform(email.split(" ")) }
val nomalFeatures = nomal.map { email => tf.transform(email.split(" ")) } //创建LabelPoint 的数据集
val positiveExamples = spamFeatures.map { feature => LabeledPoint(,feature) }
val negativeExamples = nomalFeatures.map { feature => LabeledPoint(,feature) }
val trainingData = positiveExamples.union(negativeExamples) //使用SGD算法运行逻辑回归 返回的类型是LogisticRegression 但是这个模型是有save,但是没有load方法,我还在思考,读者如果有什么意见或者看法可以下面评论的
val model = new LogisticRegressionWithSGD().run(trainingData) //创建一个邮件向量进行测试
val posTest = tf.transform("cheap stuff by sending money to ....".split(" "))
val prediction = model.predict(posTest)
println(prediction) } def getSparkCont():SparkContext={
val conf = new SparkConf().setAppName("email").setMaster("local[4]")
val sc = new SparkContext(conf)
return sc
} }

spark mllib和ml类里面的区别的更多相关文章

  1. spark MLlib DataType ML中的数据类型

    package ML.DataType; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; im ...

  2. Spark机器学习中ml和mllib中矩阵、向量

    1:Spark ML与Spark MLLIB区别? Spark MLlib是面向RDD数据抽象的编程工具类库,现在已经逐渐不再被Spark团队支持,逐渐转向Spark ML库,Spark ML是面向D ...

  3. 使用 Spark MLlib 做 K-means 聚类分析[转]

    原文地址:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice4/ 引言 提起机器学习 (Machine Lear ...

  4. Spark的MLlib和ML库的区别

    机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.其目标是使实际的机器学习可扩展和容易.在高层次上,它提供了如下工具: ML算法:通用学习算法,如分类,回归,聚类和协同过滤 特 ...

  5. Spark MLlib 机器学习

    本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新 ...

  6. 基于Spark Mllib的文本分类

    基于Spark Mllib的文本分类 文本分类是一个典型的机器学习问题,其主要目标是通过对已有语料库文本数据训练得到分类模型,进而对新文本进行类别标签的预测.这在很多领域都有现实的应用场景,如新闻网站 ...

  7. Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...

  8. Spark Mllib框架1

    1. 概述 1.1 功能 MLlib是Spark的机器学习(machine learing)库,其目标是使得机器学习的使用更加方便和简单,其具有如下功能: ML算法:常用的学习算法,包括分类.回归.聚 ...

  9. RandomForest in Spark MLLib

    决策树类模型 ml中的classification和regression主要基于以下几类: classification:决策树及其相关的集成算法,Logistics回归,多层感知模型: regres ...

随机推荐

  1. mysql中如何在命令行中,执行一个SQL脚本文件?

    需求描述: 在mysql数据库的使用中,有的时候,需要直接在shell的命令行中,执行某个SQL脚本文件, 比如,要初始化数据库,创建特定的存储过程,创建表等操作,这里进行一个基本的测试. 一般情况, ...

  2. 查看系统资源使用情况:vmstat

    vmstat命令可以动态地查看系统资源的使用情况,如内存/交换分区/CPU的使用情况,通过使用该命令可以判断系统的瓶颈在哪里: [root@localhost ~]$ vmstat 1 5 # 表示每 ...

  3. php 连接mongdb的类

    <?php/** * php 连接mongdb的类的封装 * @author 李秀然 */ class mongdb{ private $host;//"mongodb://admin ...

  4. Bootstrap篇:弹出框和提示框效果以及代码展示

     前言:对于Web开发人员,弹出框和提示框的使用肯定不会陌生,比如常见的表格新增和编辑功能,一般常见的主要有两种处理方式:行内编辑和弹出框编辑.在增加用户体验方面,弹出框和提示框起着重要的作用,如果你 ...

  5. 如何提高AJAX客户端响应速度

    AJAX的出现极大的改变了Web应用客户端的操作模式,它使的用户可以在全心工作时不必频繁的忍受那令人厌恶的页面刷新.理论上AJAX技术在很大的程度上可以减少用户操作的等待时间,同时节约网络上的数据流量 ...

  6. JS-cookie封装

    智能社学习笔记 <script type="text/javascript"> /*****设置cookie*****/ function setCookie(name ...

  7. 网页头部的声明应该是用 lang="";

    我们经常需要用缩写的代码来表示一种语言,比如用en表示英语,用de表示德语.ISO 639就是规定语种代码的国际标准.最早的时候,ISO 639规定的代码是,用两个拉丁字母表示一种语言,这被称为ISO ...

  8. ntpdate自动对准时间的脚本

    author:headsen  chen date: 2018-10-09  19:50:15 #!/bin/bash yum -y install ntpdate /usr/sbin/ntpdate ...

  9. js的delete和void关键字

    delete关键字   delete关键字的作用: 删除对象的属性 语法:delete 对象.属性 可以删除没有使用var关键字声明的全局变量(直接定义在window上面的属性) delete关键字的 ...

  10. java父类可以强制转化成子类吗?

    转自:http://blog.csdn.net/ld422586546/article/details/9707997 Java中父类强制转换成子类的原则:父类型的引用指向的是哪个子类的实例,就能转换 ...