SPPNet方法来自《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》 ,是大神何凯明2014年的paper。在此,我将自己对SPPNet的理解总结一下。

  SPPNet方法的一个创新点就是提出了空间金字塔池化,这个方法的最终速度比R-CNN快了许多倍,因为它可以输入的任意比例尺寸的图像池化为统一规格的特征向量并输入给全连接层。

  方法背景

  在之前物体检测的文章,比如R-CNN中,他们都要求输入固定大小的图像,这些图像或者经过裁切(Crop)或者经过变形缩放(Warp),都在一定程度上导致了图像信息的丢失和变形,限制了识别精确度。两种方式如下所示。

  事实上,在网络实现的过程中,卷积层是不需要输入固定大小的图片的,而且还可以生成任意大小的特征图,只是全连接层需要固定大小的输入。因此,固定长度的约束仅限于全连接层。在本文中提出了Spatial Pyramid Pooling layer 来解决这一问题,使用这种方式,可以让网络输入任意的图片,而且还会生成固定大小的输出。这样,整体的结构和之前的R-CNN有所不同。

  下图中上面的是常规的卷积神经网络的结构,先要将图像进行裁切和变形,再进行卷积操作;下面的是SPPNet方法的结构,通过SPP层将卷积层输出的任意比例尺寸的feature map池化为统一规格的特征向量传递给全连接层。

  

  Spatial Pyramid Pooling具体操作

  

  空间金字塔就是以不同大小的块对图像进行特征提取,如上图中所示,使用了4*4、2*2和1*1的网格对每个feature map进行了池化,最终每个feature map将得到16+4+1=21组特征。这种以不同的大小格子的组合方式来池化的过程就是空间金字塔池化(SPP)。

  物体检测

  带有SPP层的网络称为SPP-Net,它在物体检测上跟R-CNN也有一定的区别。首先是特征提取上,速度提升了好多,R-CNN是直接从原始图片中提取特征,它在每张原始图片上提取2000个Region Proposal,然后对每一个候选区域框进行一次卷积计算,差不多要重复2000次,而SPP-net则是在卷积原始图像之后的特征图上提取候选区域的特征。所有的卷积计算只进行了一次,效率大大提高。从这张我们可以大致看到这两种方法的区别。

  如何从一个region proposal 映射到feature map的位置?

  SPPNet通过角点尽量将图像像素映射到feature map感受野的中央,假设每一层的padding都是p/2,p为卷积核大小。对于feature map的一个像素(x',y'),其实际感受野为:(S*x',S*y'),其中S为之前所有层stride的乘积。然后对于region proposal的位置,我们获取左上右下两个点对应的feature map的位置,然后取特征就好了。左上角的映射为:

右下角映射为:

当然,如果padding大小不一致,那么就需要添加相应的偏移值。

  存在的不足

  和RCNN一样,SPP也需要训练CNN提取特征,然后训练SVM分类这些特征。需要巨大的存储空间,并且分开训练也很复杂。而且selective search的方法提取特征是在CPU上进行的,相对于GPU来说还是比较慢的。

  SPP-Net和R-CNN最大的区别就在候选框特征的提取这一步,其他的基本相同。R-CNN的具体步骤请参考R-CNN学习总结

SPP-net论文总结的更多相关文章

  1. SPP Net(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)论文理解

    论文地址:https://arxiv.org/pdf/1406.4729.pdf 论文翻译请移步:http://www.dengfanxin.cn/?p=403 一.背景: 传统的CNN要求输入图像尺 ...

  2. 论文笔记--Fast RCNN

    很久之前试着写一篇深度学习的基础知识,无奈下笔之后发现这个话题确实太大,今天发一篇最近看的论文Fast RCNN.这篇文章是微软研究院的Ross Girshick大神的一篇作品,主要是对RCNN的一些 ...

  3. [原创]Faster R-CNN论文翻译

    Faster R-CNN论文翻译   Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什 ...

  4. 读论文系列:Object Detection SPP-net

    本文为您解读SPP-net: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Motivat ...

  5. 空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)

    想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对 ...

  6. 论文阅读笔记二十六:Fast R-CNN (ICCV2015)

    论文源址:https://arxiv.org/abs/1504.08083 参考博客:https://blog.csdn.net/shenxiaolu1984/article/details/5103 ...

  7. 论文阅读笔记二十五:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPPNet CVPR2014)

    论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入 ...

  8. faster-rcnn 论文讲解

    Faster RCN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification ...

  9. SPP(Spatial Pyramid Pooling)详解

    一直对Fast RCNN中ROI Pooling层不解,不同大小的窗口输入怎么样才能得到同样大小的窗口输出呢,今天看到一篇博文讲得挺好的,摘录一下,方便查找. Introduction 在一般的CNN ...

  10. rcnn ->fast rcnn->faster rcnn物体检测论文

    faster rcnn中的rpn网络: 特征可以看做一个尺度51*39的256通道图像,对于该图像的每一个位置,考虑9个可能的候选窗口:三种面积{1282,2562,5122}×三种比例{1:1,1: ...

随机推荐

  1. Gradle Goodness: Display Available Tasks

    To see which tasks are available for our build we can run Gradle with the command-line option -t or ...

  2. Android之zip文件加密解压及进度条的实现

    zip文件的解压能够使用java的zip库,可是没有实现对加密文件的解压功能,这里能够使用zip4j来实现.详细能够參看该文<Android下zip压缩文件加密解密的完美解决方式>.该文件 ...

  3. NSDate|NSTimeZone|时区|日历

    NSDate,NSDateFormatter以及时区转换-开发者-51CTO博客 iOS 时区转换 东八区 - 简书 iOS时间的时区转换以及一些方法记录 - 简书 iOS - OC NSTimeZo ...

  4. 【PTA 天梯赛】L1-046 整除光棍(除法模拟)

    这里所谓的“光棍”,并不是指单身汪啦~ 说的是全部由1组成的数字,比如1.11.111.1111等.传说任何一个光棍都能被一个不以5结尾的奇数整除.比如,111111就可以被13整除. 现在,你的程序 ...

  5. java业务逻辑,利用hibernate获取所连接的数据库信息

    1.本人程序架构是springMVC+hibernate,这次的需求是要针对不同的数据库,做不同的处理. 2.获取所连接的数据库是什么,oracle?  mysql?  sql server?  基础 ...

  6. jqGrid 分页

    这两天一直在搞jqGrid分页,焦头烂额,不过还是有点收获的(主要是后台分页):   jqGrid分页可以分为两种,远程数据(服务器数据)分页和本地数据分页,     先看远程数据分页:   $(&q ...

  7. 课时9.HTML发展史(了解)

    这个图片里的时间不用都记住,只需要记住一些特殊的,1993年,1995年(在W3C接手以后,才有了真正意义上的标准),1999年这几个时间 WHATWG的目的是推广HTML的标准,HTML5是浏览器厂 ...

  8. 树莓派安装DNSMASQ服务

    功能: DNSMASQ是一款高性能的.小型的DNS服务器软件. * 缓存域名.IP地址,本地缓存解析的地址. * DHCP服务 1.安装 sudo apt-get update sudo apt-ge ...

  9. 网易云易盾CTO朱浩齐:我们是如何用AI赋能内容安全?

    本文由  网易云发布. 5月19日,LiveVideoStack携手网易云易盾,共同打造了“娱乐多媒体开发应用实践”专题,帮助开发者和泛娱乐平台运营人员,提升技术能力,突破难点,拓展思路与视野. 在专 ...

  10. 使用css来开启硬件加速来提高网站性能

    一.什么是硬件加速 硬件加速就是将浏览器的渲染过程交给GPU处理,而不是使用自带的比较慢的渲染器,这样就可以使得animation与transition更加顺畅.我们可以在浏览器中用css开启硬件加速 ...