方式一: 通过case class创建DataFrames(反射)

TestDataFrame1.scala

package com.bky

// 隐式类的导入
// 定义case class,相当于表结构
case class Dept(var id:Int, var position:String, var location:String) // 需要导入SparkSession这个包
import org.apache.spark.sql.SparkSession /**
* 方式一: 通过case class创建DataFrames(反射)
*/
object TestDataFrame1 { def main(args: Array[String]): Unit = { /**
* 直接使用SparkSession进行文件的创建。
* 封装了SparkContext,SparkConf,SQLContext,
* 为了向后兼容,SQLContext和HiveContext也被保存了下来
*/
val spark = SparkSession
.builder() //构建sql
.appName("TestDataFrame1") // 设置文件名
.master("local[2]") // 设置executor
.getOrCreate() //获取或创建 import spark.implicits._ // 隐式转换
// 将本地的数据读入RDD,将RDD与case class关联
val deptRDD = spark.read.textFile("/Users/hadoop/data/dept.txt")
.map(line => Dept(line.split("\t")(0).toInt,
line.split("\t")(1),
line.split("\t")(2).trim)) // 将RDD转换成DataFrames(反射)
val df = deptRDD.toDF() // 将DataFrames创建成一个临时的视图
df.createOrReplaceTempView("dept") // 使用SQL语句进行查询
spark.sql("select * from dept").show() }
}

精简版
TestDataFrame1.scala

package com.bky

import org.apache.spark.sql.SparkSession

object TestDataFrame1 extends App {
val spark = SparkSession
.builder() //构建sql
.appName("TestDataFrame1")
.master("local[2]")
.getOrCreate() import spark.implicits._
val deptRDD = spark.read.textFile("/Users/hadoop/data/dept.txt")
.map(line => Dept(line.split("\t")(0).toInt,
line.split("\t")(1),
line.split("\t")(2).trim)) val df = deptRDD.toDF()
df.createOrReplaceTempView("dept")
spark.sql("select * from dept").show()
} case class Dept(var id:Int, var position:String, var location:String)

方式二:通过创建structType创建DataFrames(编程接口)

TestDataFrame2.scala

package com.bky

import org.apache.spark.sql.types._
import org.apache.spark.sql.{Row, SparkSession} /**
*
* 方式二:通过创建structType创建DataFrames(编程接口)
*/
object TestDataFrame2 extends App { val spark = SparkSession
.builder()
.appName("TestDataFrame2")
.master("local[2]")
.getOrCreate() /**
* 将RDD数据映射成Row,需要导入import org.apache.spark.sql.Row
*/
import spark.implicits._
val path = "/Users/hadoop/data/dept.txt"
val fileRDD = spark.read.textFile(path)
val rowRDD= fileRDD.map(line => {
val fields = line.split("\t")
Row(fields(0).toInt, fields(1), fields(2).trim)
}) // 创建StructType来定义结构
val innerStruct = StructType(
// 字段名,字段类型,是否可以为空
StructField("id", IntegerType, true) ::
StructField("position", StringType, true) ::
StructField("location", StringType, true) :: Nil
) val df = spark.createDataFrame(innerStruct)
df.createOrReplaceTempView("dept")
spark.sql("select * from dept").show() }

方式三:通过json文件创建DataFrames

TestDataFrame3.scala

package com.bky

import org.apache.spark.sql.SparkSession

/**
* 方式三:通过json文件创建DataFrames
*/
object TestDataFrame3 extends App { val spark = SparkSession
.builder()
.master("local[2]")
.appName("TestDataFrame3")
.getOrCreate() val path = "/Users/hadoop/data/test.json"
val fileRDD = spark.read.json(path)
fileRDD.createOrReplaceTempView("test")
spark.sql("select * from test").show()
}

RDD转换成为DataFrame的更多相关文章

  1. Spark之 RDD转换成DataFrame的Scala实现

    依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2. ...

  2. Spark SQL中 RDD 转换到 DataFrame (方法二)

    强调它与方法一的区别:当DataFrame的数据结构不能够被提前定义.例如:(1)记录结构已经被编码成字符串 (2) 结构在文本文件中,可能需要为不同场景分别设计属性等以上情况出现适用于以下方法.1. ...

  3. Spark SQL中 RDD 转换到 DataFrame

    1.people.txtsoyo8, 35小周, 30小华, 19soyo,882./** * Created by soyo on 17-10-10. * 利用反射机制推断RDD模式 */impor ...

  4. Spark中RDD转换成DataFrame的两种方式(分别用Java和Scala实现)

    一:准备数据源     在项目下新建一个student.txt文件,里面的内容为: ,zhangsan, ,lisi, ,wanger, ,fangliu, 二:实现 Java版: 1.首先新建一个s ...

  5. RDD转换成DataFrames

    官方提供了2种方法 1.利用反射来推断包含特定类型对象的RDD的schema.这种方法会简化代码并且在你已经知道schema的时候非常适用. 先创建一个bean类 case class Person( ...

  6. RDD转换DataFrame

    Spark SQL有两种方法将RDD转为DataFrame. 1. 使用反射机制,推导包含指定类型对象RDD的schema.这种基于反射机制的方法使代码更简洁,而且如果你事先知道数据schema,推荐 ...

  7. sparksql 动态设置schema将rdd转换成dataset/dataframe

    java public class DynamicDemo { private static SparkConf conf = new SparkConf().setAppName("dyn ...

  8. 如何使用隐式转换扩展DataFrame和RDD以及其他的对象

    目的 DataFrame可以点出来很多方法,都是DF内置的. 比如说:df.withColumn(),df.printSchema(). 但是如果你想打印df中的分区位置信息,以及每个key有多少记录 ...

  9. spark的RDD如何转换为DataFrame

    1.Dataset与RDD之间的交互 Spark仅支持两种方式来将RDD转成Dataset.第一种方式是使用反射来推断一个RDD所包含的对象的特定类型.这种基于反射的方式会让代码更加地简洁,当你在编写 ...

随机推荐

  1. Step By Step Hibernate Tutorial Using eclipse WTP[z]

     [shivasoft.in/blog/sql/myqsl/step-by-step-hibernate-tutorial-using-eclipse-wtp/] Hibernate is the O ...

  2. React Native开源项目案例

    (六).React Native开源项目: 1.Pober Wong_17童鞋为gank.io做的纯React Native项目,开源地址:https://github.com/Bob1993/Rea ...

  3. Spring JMX之三:通知的处理及监听

    通过查询MBean获得信息只是查看应用状态的一种方法.但当应用发生重要事件时,如果希望 能够及时告知我们,这通常不是最有效的方法. 例如,假设Spittr应用保存了已发布的Spittle数量,而我们希 ...

  4. POJ 3057 Evacuation (二分匹配)

    题意:给定一个图,然后有几个门,每个人要出去,但是每个门每个秒只能出去一个,然后问你最少时间才能全部出去. 析:初一看,应该是像搜索,但是怎么保证每个人出去的时候都不冲突呢,毕竟每个门每次只能出一个人 ...

  5. C++继承-重载-多态-虚函数

    C++ 继承 基类 & 派生类 一个类可以派生自多个类,这意味着,它可以从多个基类继承数据和函数.定义一个派生类,我们使用一个类派生列表来指定基类.类派生列表以一个或多个基类命名,形式如下: ...

  6. 点击导航栏tableView回到顶部

      UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc] initWithTarget:self action:@selector ...

  7. 20169202 2016-2017-2《Windows攻击》

    Windows攻击 实验要求:使用Metaspoit攻击MS08-067,提交正确得到远程Shell的截图,加上自己的学号水印 (1):MS08-067远程溢出漏洞描述 MS08-067漏洞的全称为& ...

  8. Linux umask权限

    文件基本权限 Linux中文件权限由三部分组成: rw-r--r-- 前三位:表示用户所拥有的权限 中三位:表示用户所在组的权限 后三们:表示其他用户的权限 权限 八进制 十进制 - - - 000 ...

  9. (二分搜索 )Strange fuction -- HDU -- 2899

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=2899 Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  10. [Delphi]编译条件

    当软件在多个DELPHI版本下编译时,需要处理各版本的不同情况,使用编译条件技术实现. 万一博客,编译指令基础使用介绍:http://www.cnblogs.com/del/category/1686 ...