容斥原理解决某个区间[1,n]闭区间与m互质数数量问题
首先贴出代码(闭区间[1,n]范围内和m互质的数)
代码:
int solve(II n,II m){
vector<II>p;
for(II i=;i*i<=m;i++){
if(m%i==){
p.push_back(i);
while(m%i==) m/=i;
}
}
if(m>) p.push_back(m);
II sz=p.size();
LL sum=;
for(II i=;i<(<<sz);i++){
II ct=;
LL mul=;
for(II j=;j<sz;j++){
if(i&(<<j)){
ct++;
mul*=p[j];
}
}
if(ct&) sum+=n/mul;
else sum-=n/mul;
}
return n-sum;
}
这里解释一下原理:首先假设m有x个不同的质因子,那么可以组成的因子数就是2^x-1种,然后10^18以内所有的数的质因子个数不会超过15个,所以2^15次方暴力枚举所有情况这个复杂度还是可取的。我们假设p1,p2,p3都是m的质因子,假设当前枚举的因子是p1*p2*p3那么n以内可以整除p1*p2*p3的数量就是n/(p1*p2*p3),但是这里考虑到一个会重复问题就是拥有奇数个质因数的因子的在n以内可以整除的数量已经包含了偶数个数量,但是偶数个的并不包含奇数个的,所以我们枚举的时候需要奇加偶减,这样我们算出来的ans是n以内和m不互质的数的数量,那么和m互质的数量就是n-ans。
贴上一些可以用这个方法解决的练习题:
HDU1695:这个题好像正解使用什么莫比乌斯反演,题目的意思是求[1,a],[1,b]有多少对数GCD(x,y)==k,但是(x,y)和(y,x)算一对,有一个定理如果GCD(x,y)==k ,则GCD(x/k,y/k)==1那么现在问题转化为求[1,a/k],[1,b/k]以内互质的数有多少对,现在我们要取minn=min(a/k,b/k),我们可以先求minn的欧拉函数的前缀和,然后再求minn+1到max(a/k,b/k)的数在[1,max(a/k.b/k)]以内所有与它互质的数的数量,然后把所有的加起来就可以了。
代码:
//Author: xiaowuga
#include <bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
#define MAX INT_MAX
#define mem(s,ch) memset(s,ch,sizeof(s))
const long long N=;
const long long mod=1e9+;
typedef long long LL;
typedef int II;
typedef unsigned long long ull;
#define nc cout<<"nc"<<endl
#define endl "\n"
vector<LL>Euler;
void init_Euler(II n){
Euler.resize(n+);
Euler[]=;
Euler[]=;
for(LL i=;i<n;i++) Euler[i]=i;
for(LL i=;i<n;i++){
if(Euler[i]==i){
for(LL j=i;j<n;j+=i)
Euler[j]=Euler[j]/i*(i-);//先进行除法防止溢出
}
}
for(II i=;i<n;i++){
Euler[i]+=Euler[i-];
}
}
int solve(II n,II m){
vector<II>p;
for(II i=;i*i<=m;i++){
if(m%i==){
p.push_back(i);
while(m%i==) m/=i;
}
}
if(m>) p.push_back(m);
II sz=p.size();
LL sum=;
for(II i=;i<(<<sz);i++){
II ct=;
LL mul=;
for(II j=;j<sz;j++){
if(i&(<<j)){
ct++;
mul*=p[j];
}
}
if(ct&) sum+=n/mul;
else sum-=n/mul;
}
return n-sum;
}
int main() {
ios::sync_with_stdio(false);cin.tie();
II a,b,c,d,k;
II T,ca=;
init_Euler(+);
cin>>T;
while(T--){
cin>>a>>b>>c>>d>>k;
if(k==||k>b||k>d){
cout<<"Case "<<++ca<<": "<<<<endl;
continue;
}
if(b>d) swap(b,d);
b/=k;d/=k;
LL ans=Euler[b];
for(II i=b+;i<=d;i++){
ans+=solve(b,i);
}
cout<<"Case "<<++ca<<": "<<ans<<endl;
}
return ;
}
POJ2773:这个题求第n个与k互质的数。
1.一个简单的思路就是如果[1,k]中有x个与k互质的数,那么[k+1,2*k]中也有x个,每个k个一个循环都会出现x个数与k互质,而且加入y<k且y与k互质,则t*k+y也与k互质。那么我们第一个方法可以暴力算出比k小的数里面所有与k互质的数都是多少复杂度是klog(k),然后看一下n是k第几轮循环里面。然后直接确定这个数多少。
2.二分+验证的思想,首先一个数越大,那么他包含的与k互质的数一定越多对吧?这个性质不就是单调性吗?任何满足单调性的问题我们都可以用二分来解决,所以我们可以用二分,加验证的思想找到和第n个k互质的数是多少
代码:
//Author: xiaowuga
#include<iostream>
#include<vector>
using namespace std;
#define inf 0x3f3f3f3f
#define MAX INT_MAX
#define mem(s,ch) memset(s,ch,sizeof(s))
const long long N=;
const long long mod=1e9+;
typedef long long LL;
typedef int II;
typedef unsigned long long ull;
#define nc cout<<"nc"<<endl
#define endl "\n"
LL solve(II r,LL n){
vector<int>p;
for(II i=;i*i<=r;i++){
if(r%i==){
p.push_back(i);
while(r%i==) r/=i;
}
}
if(r>) p.push_back(r);
LL sum=;
for(LL i=;i<(<<p.size());i++){
LL d=,ct=;
for(II j=;j<p.size();j++){
if(i&(<<j)){
ct++;
d*=p[j];
}
}
if(ct%) sum+=n/d;
else sum-=n/d;
}
return n-sum;
}
int main() {
ios::sync_with_stdio(false);cin.tie();
II n,k;
while(cin>>n>>k){
LL l=,r=inf*;
LL ans=;
while(l<r){
LL m=l+(r-l)/;
LL t=solve(n,m);
if(t>=k){
if(t==k) ans=m;
r=m;
}
else{
l=m+;
}
}
cout<<ans<<endl;
}
return ;
}
容斥原理解决某个区间[1,n]闭区间与m互质数数量问题的更多相关文章
- paip. 解决php 以及 python 连接access无效的参数量。参数不足,期待是 1”的错误
paip. 解决php 以及 python 连接access无效的参数量.参数不足,期待是 1"的错误 作者Attilax 艾龙, EMAIL:1466519819@qq.com 来源 ...
- HDU 3709 Balanced Number 求区间内的满足是否平衡的数量 (数位dp)
平衡数的定义是指,以某位作为支点,此位的左面(数字 * 距离)之和 与右边相等,距离是指某位到支点的距离; 题意:求区间内满足平衡数的数量 : 分析:很好这又是常见的数位dp , 不过不同的是我们这次 ...
- 2017乌鲁木齐区域赛K(容斥原理【求指定区间内与n互素的数的个数】)
#include<bits/stdc++.h>using namespace std;const long long mod = 998244353;typedef const long ...
- 贪心算法----区间选点问题(POJ1201)
题目: 题目的大致意思是,给定n个闭区间,并且这个闭区间上的点都是整数,现在要求你使用最少的点来覆盖这些区间并且每个区间的覆盖的点的数量满足输入的要求点覆盖区间的数量. 输入: 第一行输入n,代表n个 ...
- BZOJ 3226: [Sdoi2008]校门外的区间
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3226 题意:初始集合S为空.模拟四种集合操作:集合并.交.差.补集并. 思路:区间 ...
- [kuangbin带你飞]专题二十二 区间DP
ID Origin Title 17 / 60 Problem A ZOJ 3537 Cake 54 / 105 Problem B LightOJ 1422 Hallowee ...
- POJ 2773 Happy 2006#素数筛选+容斥原理+二分
http://poj.org/problem?id=2773 说实话这道题..一点都不Happy好吗 似乎还可以用欧拉函数来解这道题,但正好刚学了容斥原理和二分,就用这个解法吧. 题解:要求输出[1, ...
- 线段树(区间树)之区间染色和4n推导过程
前言 线段树(区间树)是什么呢?有了二叉树.二分搜索树,线段树又是干什么的呢?最经典的线段树问题:区间染色:正如它的名字而言,主要解决区间的问题 一.线段树说明 1.什么是线段树? 线段树首先是二叉树 ...
- HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to ...
随机推荐
- ti的硬件时钟和系统时钟同步
1.hwclock -w软到硬 hwclock -s 硬到软 2. 通过ntp网络时钟控制同步 3.etc下的localtime文件和GMT-8
- JMeter使用记录2 -- Web測试
Web測试用例 新建线程组.配置起3线程,循环1次.1秒启动全部线程.进行login.循环1个主要页面的读写,并对另外一个主要页面进行读操作,最后logout并在aggregate graph/gra ...
- 利用PHPExcel导出Excel相关设置
功能包括: 1.设置单元格格式,包括单元格边框.单元格高度.单元格宽度 2.合并指定的单元格 3.设置Excel数据源,并将数据源保护起来(这个是为了实现单元格下拉选项功能) 4.设置字体样式 pub ...
- 【转】struts2.5框架使用通配符指定方法(常见错误)
在学习struts框架时经常会使用到通配符调用方法,如下: <package name="shop" namespace="/" extends=&quo ...
- VC++ 创建一个动态增长的层叠菜单
工作中需要创建一个动态增长的层叠菜单,类似于动态增长的多语言切换菜单,也是废了好大劲哪,分享一下,请交流参考. 类似效果图: 弹出子菜单各菜单项的意义一致,用ON_COMMAND_RANGE宏来统一实 ...
- 记录下一个自己不常用的关键字-yield
yield 这个关键字 一直很少用,也不知道具体用途.按照习惯就查询了下MSDN. 意思大致是这样的:在迭代器块中用于向枚举数对象提供值或发出迭代结束信号 表现形式:1. yield return & ...
- Linux 防火墙:Netfilter
一.Netfilter 简介 (1) Netfilter 是 Linux 内置的一种防火墙机制,我们一般也称之为数据包过滤机制,而 iptables 只是操作 netfilter 的一个命令行工具(2 ...
- Python urllib2 模块
urllib2.urlopen(url, data=None, timeout=<object object>) :用于打开一个URL,URL可以是一个字符串也可以是一个请求对象,data ...
- cocos2dx游戏--欢欢英雄传说--添加动作
添加完人物之后接着给人物添加上动作.我们为hero添加4个动作:attack(由3张图片构成),walk(由2张图片构成),hit(由1张图片构成),dead(由1张图片构成):同样,为enemy添加 ...
- BUG:给Nexus7编译Android4.2的时候出现 fatal error: map: No such file or directory
情况是这样的,某人最近入手一台nexus7,于是在cyanogenmod 将nexus7的原代码下载到本地,编译环境是UBUNTU 12,04 然后编译的时候,出现了如下的错误导致编译失败 <p ...