JDK7集合框架源码阅读(七) ArrayDeque
基于版本jdk1.7.0_80
java.util.ArrayDeque
代码如下
/*
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ /*
*
*
*
*
*
* Written by Josh Bloch of Google Inc. and released to the public domain,
* as explained at http://creativecommons.org/publicdomain/zero/1.0/.
*/ package java.util;
import java.io.*; /**
* Resizable-array implementation of the {@link Deque} interface. Array
* deques have no capacity restrictions; they grow as necessary to support
* usage. They are not thread-safe; in the absence of external
* synchronization, they do not support concurrent access by multiple threads.
* Null elements are prohibited. This class is likely to be faster than
* {@link Stack} when used as a stack, and faster than {@link LinkedList}
* when used as a queue.
*
* <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
* Exceptions include {@link #remove(Object) remove}, {@link
* #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
* removeLastOccurrence}, {@link #contains contains}, {@link #iterator
* iterator.remove()}, and the bulk operations, all of which run in linear
* time.
*
* <p>The iterators returned by this class's <tt>iterator</tt> method are
* <i>fail-fast</i>: If the deque is modified at any time after the iterator
* is created, in any way except through the iterator's own <tt>remove</tt>
* method, the iterator will generally throw a {@link
* ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the
* future.
*
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: <i>the fail-fast behavior of iterators
* should be used only to detect bugs.</i>
*
* <p>This class and its iterator implement all of the
* <em>optional</em> methods of the {@link Collection} and {@link
* Iterator} interfaces.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @author Josh Bloch and Doug Lea
* @since 1.6
* @param <E> the type of elements held in this collection
*/
public class ArrayDeque<E> extends AbstractCollection<E>
implements Deque<E>, Cloneable, Serializable
{
/**
* The array in which the elements of the deque are stored.
* The capacity of the deque is the length of this array, which is
* always a power of two. The array is never allowed to become
* full, except transiently within an addX method where it is
* resized (see doubleCapacity) immediately upon becoming full,
* thus avoiding head and tail wrapping around to equal each
* other. We also guarantee that all array cells not holding
* deque elements are always null.
*/
private transient E[] elements; /**
* The index of the element at the head of the deque (which is the
* element that would be removed by remove() or pop()); or an
* arbitrary number equal to tail if the deque is empty.
*/
private transient int head; /**
* The index at which the next element would be added to the tail
* of the deque (via addLast(E), add(E), or push(E)).
*/
private transient int tail; /**
* The minimum capacity that we'll use for a newly created deque.
* Must be a power of 2.
*/
private static final int MIN_INITIAL_CAPACITY = 8; // ****** Array allocation and resizing utilities ****** /**
* Allocate empty array to hold the given number of elements.
*
* @param numElements the number of elements to hold
*/
private void allocateElements(int numElements) {
int initialCapacity = MIN_INITIAL_CAPACITY;
// Find the best power of two to hold elements.
// Tests "<=" because arrays aren't kept full.
if (numElements >= initialCapacity) {
initialCapacity = numElements;
initialCapacity |= (initialCapacity >>> 1);
initialCapacity |= (initialCapacity >>> 2);
initialCapacity |= (initialCapacity >>> 4);
initialCapacity |= (initialCapacity >>> 8);
initialCapacity |= (initialCapacity >>> 16);
initialCapacity++; if (initialCapacity < 0) // Too many elements, must back off
initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
}
elements = (E[]) new Object[initialCapacity];
} /**
* Double the capacity of this deque. Call only when full, i.e.,
* when head and tail have wrapped around to become equal.
*/
private void doubleCapacity() {
assert head == tail;
int p = head;
int n = elements.length;
int r = n - p; // number of elements to the right of p
int newCapacity = n << 1;
if (newCapacity < 0)
throw new IllegalStateException("Sorry, deque too big");
Object[] a = new Object[newCapacity];
System.arraycopy(elements, p, a, 0, r);
System.arraycopy(elements, 0, a, r, p);
elements = (E[])a;
head = 0;
tail = n;
} /**
* Copies the elements from our element array into the specified array,
* in order (from first to last element in the deque). It is assumed
* that the array is large enough to hold all elements in the deque.
*
* @return its argument
*/
private <T> T[] copyElements(T[] a) {
if (head < tail) {
System.arraycopy(elements, head, a, 0, size());
} else if (head > tail) {
int headPortionLen = elements.length - head;
System.arraycopy(elements, head, a, 0, headPortionLen);
System.arraycopy(elements, 0, a, headPortionLen, tail);
}
return a;
} /**
* Constructs an empty array deque with an initial capacity
* sufficient to hold 16 elements.
*/
public ArrayDeque() {
elements = (E[]) new Object[16];
} /**
* Constructs an empty array deque with an initial capacity
* sufficient to hold the specified number of elements.
*
* @param numElements lower bound on initial capacity of the deque
*/
public ArrayDeque(int numElements) {
allocateElements(numElements);
} /**
* Constructs a deque containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator. (The first element returned by the collection's
* iterator becomes the first element, or <i>front</i> of the
* deque.)
*
* @param c the collection whose elements are to be placed into the deque
* @throws NullPointerException if the specified collection is null
*/
public ArrayDeque(Collection<? extends E> c) {
allocateElements(c.size());
addAll(c);
} // The main insertion and extraction methods are addFirst,
// addLast, pollFirst, pollLast. The other methods are defined in
// terms of these. /**
* Inserts the specified element at the front of this deque.
*
* @param e the element to add
* @throws NullPointerException if the specified element is null
*/
public void addFirst(E e) {
if (e == null)
throw new NullPointerException();
elements[head = (head - 1) & (elements.length - 1)] = e;
if (head == tail)
doubleCapacity();
} /**
* Inserts the specified element at the end of this deque.
*
* <p>This method is equivalent to {@link #add}.
*
* @param e the element to add
* @throws NullPointerException if the specified element is null
*/
public void addLast(E e) {
if (e == null)
throw new NullPointerException();
elements[tail] = e;
if ( (tail = (tail + 1) & (elements.length - 1)) == head)
doubleCapacity();
} /**
* Inserts the specified element at the front of this deque.
*
* @param e the element to add
* @return <tt>true</tt> (as specified by {@link Deque#offerFirst})
* @throws NullPointerException if the specified element is null
*/
public boolean offerFirst(E e) {
addFirst(e);
return true;
} /**
* Inserts the specified element at the end of this deque.
*
* @param e the element to add
* @return <tt>true</tt> (as specified by {@link Deque#offerLast})
* @throws NullPointerException if the specified element is null
*/
public boolean offerLast(E e) {
addLast(e);
return true;
} /**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeFirst() {
E x = pollFirst();
if (x == null)
throw new NoSuchElementException();
return x;
} /**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeLast() {
E x = pollLast();
if (x == null)
throw new NoSuchElementException();
return x;
} public E pollFirst() {
int h = head;
E result = elements[h]; // Element is null if deque empty
if (result == null)
return null;
elements[h] = null; // Must null out slot
head = (h + 1) & (elements.length - 1);
return result;
} public E pollLast() {
int t = (tail - 1) & (elements.length - 1);
E result = elements[t];
if (result == null)
return null;
elements[t] = null;
tail = t;
return result;
} /**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getFirst() {
E x = elements[head];
if (x == null)
throw new NoSuchElementException();
return x;
} /**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getLast() {
E x = elements[(tail - 1) & (elements.length - 1)];
if (x == null)
throw new NoSuchElementException();
return x;
} public E peekFirst() {
return elements[head]; // elements[head] is null if deque empty
} public E peekLast() {
return elements[(tail - 1) & (elements.length - 1)];
} /**
* Removes the first occurrence of the specified element in this
* deque (when traversing the deque from head to tail).
* If the deque does not contain the element, it is unchanged.
* More formally, removes the first element <tt>e</tt> such that
* <tt>o.equals(e)</tt> (if such an element exists).
* Returns <tt>true</tt> if this deque contained the specified element
* (or equivalently, if this deque changed as a result of the call).
*
* @param o element to be removed from this deque, if present
* @return <tt>true</tt> if the deque contained the specified element
*/
public boolean removeFirstOccurrence(Object o) {
if (o == null)
return false;
int mask = elements.length - 1;
int i = head;
E x;
while ( (x = elements[i]) != null) {
if (o.equals(x)) {
delete(i);
return true;
}
i = (i + 1) & mask;
}
return false;
} /**
* Removes the last occurrence of the specified element in this
* deque (when traversing the deque from head to tail).
* If the deque does not contain the element, it is unchanged.
* More formally, removes the last element <tt>e</tt> such that
* <tt>o.equals(e)</tt> (if such an element exists).
* Returns <tt>true</tt> if this deque contained the specified element
* (or equivalently, if this deque changed as a result of the call).
*
* @param o element to be removed from this deque, if present
* @return <tt>true</tt> if the deque contained the specified element
*/
public boolean removeLastOccurrence(Object o) {
if (o == null)
return false;
int mask = elements.length - 1;
int i = (tail - 1) & mask;
E x;
while ( (x = elements[i]) != null) {
if (o.equals(x)) {
delete(i);
return true;
}
i = (i - 1) & mask;
}
return false;
} // *** Queue methods *** /**
* Inserts the specified element at the end of this deque.
*
* <p>This method is equivalent to {@link #addLast}.
*
* @param e the element to add
* @return <tt>true</tt> (as specified by {@link Collection#add})
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
addLast(e);
return true;
} /**
* Inserts the specified element at the end of this deque.
*
* <p>This method is equivalent to {@link #offerLast}.
*
* @param e the element to add
* @return <tt>true</tt> (as specified by {@link Queue#offer})
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
return offerLast(e);
} /**
* Retrieves and removes the head of the queue represented by this deque.
*
* This method differs from {@link #poll poll} only in that it throws an
* exception if this deque is empty.
*
* <p>This method is equivalent to {@link #removeFirst}.
*
* @return the head of the queue represented by this deque
* @throws NoSuchElementException {@inheritDoc}
*/
public E remove() {
return removeFirst();
} /**
* Retrieves and removes the head of the queue represented by this deque
* (in other words, the first element of this deque), or returns
* <tt>null</tt> if this deque is empty.
*
* <p>This method is equivalent to {@link #pollFirst}.
*
* @return the head of the queue represented by this deque, or
* <tt>null</tt> if this deque is empty
*/
public E poll() {
return pollFirst();
} /**
* Retrieves, but does not remove, the head of the queue represented by
* this deque. This method differs from {@link #peek peek} only in
* that it throws an exception if this deque is empty.
*
* <p>This method is equivalent to {@link #getFirst}.
*
* @return the head of the queue represented by this deque
* @throws NoSuchElementException {@inheritDoc}
*/
public E element() {
return getFirst();
} /**
* Retrieves, but does not remove, the head of the queue represented by
* this deque, or returns <tt>null</tt> if this deque is empty.
*
* <p>This method is equivalent to {@link #peekFirst}.
*
* @return the head of the queue represented by this deque, or
* <tt>null</tt> if this deque is empty
*/
public E peek() {
return peekFirst();
} // *** Stack methods *** /**
* Pushes an element onto the stack represented by this deque. In other
* words, inserts the element at the front of this deque.
*
* <p>This method is equivalent to {@link #addFirst}.
*
* @param e the element to push
* @throws NullPointerException if the specified element is null
*/
public void push(E e) {
addFirst(e);
} /**
* Pops an element from the stack represented by this deque. In other
* words, removes and returns the first element of this deque.
*
* <p>This method is equivalent to {@link #removeFirst()}.
*
* @return the element at the front of this deque (which is the top
* of the stack represented by this deque)
* @throws NoSuchElementException {@inheritDoc}
*/
public E pop() {
return removeFirst();
} private void checkInvariants() {
assert elements[tail] == null;
assert head == tail ? elements[head] == null :
(elements[head] != null &&
elements[(tail - 1) & (elements.length - 1)] != null);
assert elements[(head - 1) & (elements.length - 1)] == null;
} /**
* Removes the element at the specified position in the elements array,
* adjusting head and tail as necessary. This can result in motion of
* elements backwards or forwards in the array.
*
* <p>This method is called delete rather than remove to emphasize
* that its semantics differ from those of {@link List#remove(int)}.
*
* @return true if elements moved backwards
*/
private boolean delete(int i) {
checkInvariants();
final E[] elements = this.elements;
final int mask = elements.length - 1;
final int h = head;
final int t = tail;
final int front = (i - h) & mask;
final int back = (t - i) & mask; // Invariant: head <= i < tail mod circularity
if (front >= ((t - h) & mask))
throw new ConcurrentModificationException(); // Optimize for least element motion
if (front < back) {
if (h <= i) {
System.arraycopy(elements, h, elements, h + 1, front);
} else { // Wrap around
System.arraycopy(elements, 0, elements, 1, i);
elements[0] = elements[mask];
System.arraycopy(elements, h, elements, h + 1, mask - h);
}
elements[h] = null;
head = (h + 1) & mask;
return false;
} else {
if (i < t) { // Copy the null tail as well
System.arraycopy(elements, i + 1, elements, i, back);
tail = t - 1;
} else { // Wrap around
System.arraycopy(elements, i + 1, elements, i, mask - i);
elements[mask] = elements[0];
System.arraycopy(elements, 1, elements, 0, t);
tail = (t - 1) & mask;
}
return true;
}
} // *** Collection Methods *** /**
* Returns the number of elements in this deque.
*
* @return the number of elements in this deque
*/
public int size() {
return (tail - head) & (elements.length - 1);
} /**
* Returns <tt>true</tt> if this deque contains no elements.
*
* @return <tt>true</tt> if this deque contains no elements
*/
public boolean isEmpty() {
return head == tail;
} /**
* Returns an iterator over the elements in this deque. The elements
* will be ordered from first (head) to last (tail). This is the same
* order that elements would be dequeued (via successive calls to
* {@link #remove} or popped (via successive calls to {@link #pop}).
*
* @return an iterator over the elements in this deque
*/
public Iterator<E> iterator() {
return new DeqIterator();
} public Iterator<E> descendingIterator() {
return new DescendingIterator();
} private class DeqIterator implements Iterator<E> {
/**
* Index of element to be returned by subsequent call to next.
*/
private int cursor = head; /**
* Tail recorded at construction (also in remove), to stop
* iterator and also to check for comodification.
*/
private int fence = tail; /**
* Index of element returned by most recent call to next.
* Reset to -1 if element is deleted by a call to remove.
*/
private int lastRet = -1; public boolean hasNext() {
return cursor != fence;
} public E next() {
if (cursor == fence)
throw new NoSuchElementException();
E result = elements[cursor];
// This check doesn't catch all possible comodifications,
// but does catch the ones that corrupt traversal
if (tail != fence || result == null)
throw new ConcurrentModificationException();
lastRet = cursor;
cursor = (cursor + 1) & (elements.length - 1);
return result;
} public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
if (delete(lastRet)) { // if left-shifted, undo increment in next()
cursor = (cursor - 1) & (elements.length - 1);
fence = tail;
}
lastRet = -1;
}
} private class DescendingIterator implements Iterator<E> {
/*
* This class is nearly a mirror-image of DeqIterator, using
* tail instead of head for initial cursor, and head instead of
* tail for fence.
*/
private int cursor = tail;
private int fence = head;
private int lastRet = -1; public boolean hasNext() {
return cursor != fence;
} public E next() {
if (cursor == fence)
throw new NoSuchElementException();
cursor = (cursor - 1) & (elements.length - 1);
E result = elements[cursor];
if (head != fence || result == null)
throw new ConcurrentModificationException();
lastRet = cursor;
return result;
} public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
if (!delete(lastRet)) {
cursor = (cursor + 1) & (elements.length - 1);
fence = head;
}
lastRet = -1;
}
} /**
* Returns <tt>true</tt> if this deque contains the specified element.
* More formally, returns <tt>true</tt> if and only if this deque contains
* at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
*
* @param o object to be checked for containment in this deque
* @return <tt>true</tt> if this deque contains the specified element
*/
public boolean contains(Object o) {
if (o == null)
return false;
int mask = elements.length - 1;
int i = head;
E x;
while ( (x = elements[i]) != null) {
if (o.equals(x))
return true;
i = (i + 1) & mask;
}
return false;
} /**
* Removes a single instance of the specified element from this deque.
* If the deque does not contain the element, it is unchanged.
* More formally, removes the first element <tt>e</tt> such that
* <tt>o.equals(e)</tt> (if such an element exists).
* Returns <tt>true</tt> if this deque contained the specified element
* (or equivalently, if this deque changed as a result of the call).
*
* <p>This method is equivalent to {@link #removeFirstOccurrence}.
*
* @param o element to be removed from this deque, if present
* @return <tt>true</tt> if this deque contained the specified element
*/
public boolean remove(Object o) {
return removeFirstOccurrence(o);
} /**
* Removes all of the elements from this deque.
* The deque will be empty after this call returns.
*/
public void clear() {
int h = head;
int t = tail;
if (h != t) { // clear all cells
head = tail = 0;
int i = h;
int mask = elements.length - 1;
do {
elements[i] = null;
i = (i + 1) & mask;
} while (i != t);
}
} /**
* Returns an array containing all of the elements in this deque
* in proper sequence (from first to last element).
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this deque. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this deque
*/
public Object[] toArray() {
return copyElements(new Object[size()]);
} /**
* Returns an array containing all of the elements in this deque in
* proper sequence (from first to last element); the runtime type of the
* returned array is that of the specified array. If the deque fits in
* the specified array, it is returned therein. Otherwise, a new array
* is allocated with the runtime type of the specified array and the
* size of this deque.
*
* <p>If this deque fits in the specified array with room to spare
* (i.e., the array has more elements than this deque), the element in
* the array immediately following the end of the deque is set to
* <tt>null</tt>.
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose <tt>x</tt> is a deque known to contain only strings.
* The following code can be used to dump the deque into a newly
* allocated array of <tt>String</tt>:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that <tt>toArray(new Object[0])</tt> is identical in function to
* <tt>toArray()</tt>.
*
* @param a the array into which the elements of the deque are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this deque
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this deque
* @throws NullPointerException if the specified array is null
*/
public <T> T[] toArray(T[] a) {
int size = size();
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
copyElements(a);
if (a.length > size)
a[size] = null;
return a;
} // *** Object methods *** /**
* Returns a copy of this deque.
*
* @return a copy of this deque
*/
public ArrayDeque<E> clone() {
try {
ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
result.elements = Arrays.copyOf(elements, elements.length);
return result; } catch (CloneNotSupportedException e) {
throw new AssertionError();
}
} /**
* Appease the serialization gods.
*/
private static final long serialVersionUID = 2340985798034038923L; /**
* Serialize this deque.
*
* @serialData The current size (<tt>int</tt>) of the deque,
* followed by all of its elements (each an object reference) in
* first-to-last order.
*/
private void writeObject(ObjectOutputStream s) throws IOException {
s.defaultWriteObject(); // Write out size
s.writeInt(size()); // Write out elements in order.
int mask = elements.length - 1;
for (int i = head; i != tail; i = (i + 1) & mask)
s.writeObject(elements[i]);
} /**
* Deserialize this deque.
*/
private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException {
s.defaultReadObject(); // Read in size and allocate array
int size = s.readInt();
allocateElements(size);
head = 0;
tail = size; // Read in all elements in the proper order.
for (int i = 0; i < size; i++)
elements[i] = (E)s.readObject();
}
}
1. 接口分析
继承于AbstractCollection
Deque,Cloneable,java.io.Serializable接口
2. 实现原理
循环数组存放元素,定义head与tail指针
head:队列中第一个元素指向的位置,或者说调用pop方法,队列将要被弹出元素的位置
tail:调用addLast方法,队列下一个元素将要被插入的位置
两种情况下head==tail,1. 队列为空时,2. 队列塞满时的瞬间(马上会调用扩容函数,这样head又不等于tail了)
所以只要在插入元素后检测head==tail是否成立,即可知道队列是否已满,如果成立,需要调用扩容函数
至于判定队列是否为空,只要检测head==null是否成立即可
3. 底层数组的大小必须是2的n次幂
主要原因是为了后续计算方便,底层数组如果长度为2的n次幂,很多操作可以用位运算解决,不然得用取模,相对较慢
但是这里有一些黑魔法
ArrayDeque有一个带int参数的构造函数,可以用于设置底层数组的长度,如果传入的长度不为2的n次幂,那么会向上取整到一个最接近的2的n次幂,然后新建一个对应长度的数组,对应代码如下:
private void allocateElements(int numElements) {
int initialCapacity = MIN_INITIAL_CAPACITY;
// Find the best power of two to hold elements.
// Tests "<=" because arrays aren't kept full.
if (numElements >= initialCapacity) {
initialCapacity = numElements;
initialCapacity |= (initialCapacity >>> 1);
initialCapacity |= (initialCapacity >>> 2);
initialCapacity |= (initialCapacity >>> 4);
initialCapacity |= (initialCapacity >>> 8);
initialCapacity |= (initialCapacity >>> 16);
initialCapacity++; if (initialCapacity < 0) // Too many elements, must back off
initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
}
elements = (E[]) new Object[initialCapacity];
}
这一段代码非常有趣,我试着描述一下它的工作原理
假设我们传入的numElements为1024,将它转成二进制的话,就是0100,0000,0000,最高位有一个连续的1
在第一次位运算中,最高位的一个1会向左移动一位并复制,也就是得到了0110,0000,0000,现在我们高位有两个连续的1了
在第二次位运算中,最高位的两个1会向左移动两位并复制,也就是得到了0111,1000,0000,现在我们高位有四个连续的1了
。。。
连续操作几次之后,最高位的一个1,会将后面的bit全部覆盖,也就是得到0111,1111,1111
现在只要再自加1,就能得到比numElements大的最近的2的n次幂了
4. add与poll操作
public void addLast(E e) {
if (e == null)//队列中不能加入null元素,否则会引起poll函数的错误判断
throw new NullPointerException();
elements[tail] = e;
if ( (tail = (tail + 1) & (elements.length - 1)) == head)//tail向后移动,如果越界则归0。插入元素后如果head==tail,那么说明底层数组已满
doubleCapacity();//扩容
} public E pollFirst() {
int h = head;
E result = elements[h]; // Element is null if deque empty
if (result == null)//如果head指向的元素为null,那么队列为空
return null;
elements[h] = null; // Must null out slot
head = (h + 1) & (elements.length - 1);//head向后移动,如果越界则归0
return result;
}
这个代码是写得非常好的,我自认写不出这么简洁的代码
5. 扩容
private void doubleCapacity() {
assert head == tail;
int p = head;
int n = elements.length;
int r = n - p; // number of elements to the right of p
int newCapacity = n << 1;
if (newCapacity < 0)
throw new IllegalStateException("Sorry, deque too big");
Object[] a = new Object[newCapacity];
System.arraycopy(elements, p, a, 0, r);//[head,elements.length)的半段
System.arraycopy(elements, 0, a, r, p);//[0,head)的半段
elements = (E[])a;
head = 0;//重置指针
tail = n;
}
6. 不变量检测
private void checkInvariants() {
assert elements[tail] == null;//tail指针指向的位置必须为null,虽然在队列满的瞬间tail指向的元素不为null,但是马上会进行扩容操作,然后就又为null了
assert head == tail ? elements[head] == null ://如果head==tail,那么队列必然为空,head指针指向的元素也必须为null
(elements[head] != null &&//队列不为空,那么head指向的元素也不为null
elements[(tail - 1) & (elements.length - 1)] != null);//tail指针的前一个元素也必须不为null
assert elements[(head - 1) & (elements.length - 1)] == null;//head指针的前一个元素必须为null
}
JDK7集合框架源码阅读(七) ArrayDeque的更多相关文章
- JDK7集合框架源码阅读(五) Hashtable
基于版本jdk1.7.0_80 java.util.Hashtable 代码如下 /* * Copyright (c) 1994, 2011, Oracle and/or its affiliates ...
- JDK7集合框架源码阅读(二) LinkedList
基于版本jdk1.7.0_80 java.util.LinkedList 代码如下 /* * Copyright (c) 1997, 2011, Oracle and/or its affiliate ...
- JDK7集合框架源码阅读(四) LinkedHashMap
基于版本jdk1.7.0_80 java.util.LinkedHashMap 代码如下 /* * Copyright (c) 2000, 2010, Oracle and/or its affili ...
- JDK7集合框架源码阅读(一) ArrayList
基于版本jdk1.7.0_80 java.util.ArrayList 代码如下 /* * Copyright (c) 1997, 2013, Oracle and/or its affiliates ...
- JDK7集合框架源码阅读(三) HashMap
基于版本jdk1.7.0_80 java.util.HashMap 代码如下 /* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. ...
- JDK7集合框架源码阅读(六) HashSet与LinkedHashSet
基于版本jdk1.7.0_80 java.util.HashSet java.util.LinkedHashSet 代码如下 HashSet,312行 /* * Copyright (c) 1997, ...
- CI框架源码阅读笔记5 基准测试 BenchMark.php
上一篇博客(CI框架源码阅读笔记4 引导文件CodeIgniter.php)中,我们已经看到:CI中核心流程的核心功能都是由不同的组件来完成的.这些组件类似于一个一个单独的模块,不同的模块完成不同的功 ...
- CI框架源码阅读笔记4 引导文件CodeIgniter.php
到了这里,终于进入CI框架的核心了.既然是“引导”文件,那么就是对用户的请求.参数等做相应的导向,让用户请求和数据流按照正确的线路各就各位.例如,用户的请求url: http://you.host.c ...
- CI框架源码阅读笔记3 全局函数Common.php
从本篇开始,将深入CI框架的内部,一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说,全局函数具有最高的加载优先权,因此大多数的框架中BootStrap ...
随机推荐
- Java基本数据类型总结二
Java 基本数据类型总结二 变量就是申请内存来存储值.也就是说,当创建变量的时候,需要在内存中申请空间. 内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用来储存该类型数据. 因此,通过 ...
- 《Cracking the Coding Interview》——第17章:普通题——题目13
2014-04-29 00:15 题目:将二叉搜索树展开成一个双向链表,要求这个链表仍是有序的,而且不能另外分配对象,就地完成. 解法:Leetcode上也有,递归解法. 代码: // 17.13 F ...
- 安装LoadRunner11报缺少vc2005_sp1_with_atl_fix_redist的错误
找到安装程序自带的lrunner\Chs\prerequisites\vc2005_sp1_redist,双击运行vcredist_x86.exe,再重新安装LoadRunner即可成功. 参考资料: ...
- 项目中DataTables分页插件的使用
在项目开发的过程中,一般都会对表格进行分页处理,大多是情况下会在项目中配置好后台分页插件,提高效率,减轻浏览器的压力.但是有时会遇到有些数据不能直接通过分页插件操作数据库进行分页数据查询,那就需要用到 ...
- Wordpress 为用户或角色 role 添加 capabilities(权限)
首先查看角色具有哪些权限: $admin_role_set = get_role( 'administrator' )->capabilities; $author_role_set = get ...
- 仅需几行代码 轻松实现ETH代币空投
仅需几行代码 轻松实现ETH代币空投 批量发送以太坊,部署下面的合约,然后往下面的合约打币,就可以分发 ragma solidity ^0.4.21; contract batchTransfer { ...
- CentOS6.5下搭建LAMP环境(源码编译方式)
CentOS 6.5安装配置LAMP服务器(Apache+PHP5+MySQL) 学习PHP脚本编程语言之前,必须先搭建并熟悉开发环境,开发环境有很多种,例如LAMP ,WAMP,MAMP等.这里我介 ...
- Codeforces Round #326(Div2)
CodeForces 588A 题意:Duff喜欢吃肉,想在接下来的n天,每天都有Ai斤肉吃,但每一天肉的单价Pi不定,肉 可以保存不过期,现已知n天每天肉的斤数Ai,以及单价Pi,为了使每天都 ...
- C++ 虚继承内存分配
我们知道,虚继承的基类在类的层次结构中只可能出现一个实例.虚基类在类的层次结构中的位置是不能固定的,因为继承了虚基类的类可能会再次被其他类多继承. 比如class A: virtual T{} 这时T ...
- hadoop2.5.2学习及实践笔记(一)—— 伪分布式学习环境搭建
软件 工具:vmware 10 系统:centOS 6.5 64位 Apache Hadoop: 2.5.2 64位 Jdk: 1.7.0_75 64位 安装规划 /opt/softwares ...