1405 树的距离之和

题意

给定一棵无根树,假设它有n个节点,节点编号从1到n,求任意两点之间的距离(最短路径)之和。

分析

树形DP。

首先我们让 \(1\) 为根。要开两个数组 \(up \ down\) 分别记录上面点、下面的点到当前点的距离之和。那么对于每个点答案就是 \(up[i] + down[i]\) 。

\(sons[u]\) 数组表示 \(u\) 以及它下面的所有子孙的数量。

显然 \(down[u]\) 是很好求的,当我们计算到某一点 \(u\) 时,当它的以 v 节点为根的子树递归结束后,有 \(down[u] = down[v] + sons[v]\) ,可以把 \(sons[v]\) 当做下面所有点到 \(u\) 这一点有多少条路径,对于 \(u - v\) 这条边,每一条路径都会算一次贡献。

然后在开个 \(DFS\) 去求 \(up[v]\) ,设 \(u\) 为 \(v\) 的父亲节点,有 \(up[v] = up[u] + (n - sons[u]) + (sons[u] - sons[v]) + (down[u] - down[v] - sons[v])\) ,和上面类似 ,第一个括号算的是所有 u 上面的的节点的数量,第二个括号算的是除了 \(v\) 这棵子树,\(u\) 的其它子树的节点数量,意义就和上面的 \(sons[v]\) 一样,最后一个括号算的是 \(u\) 的其它子树上的节点到 \(u\) 的距离之和。

附上一组数据,模拟完就懂了(树形DP真是在树上找规律啊.....)

7
1 2
2 3
2 4
4 6
4 7
2 5
----
13
8
13
9
13
14
14

code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
#include<vector>
#include<iostream>
#include<map>
using namespace std;
typedef long long ll;
const int MAXN = 1e5 + 10;
const int INF = 1e9;
ll up[MAXN], down[MAXN];
int n, sons[MAXN];
int head[MAXN << 1];
struct edge {
int to, next;
}e[MAXN << 1];
int cnt = 0;
void addedge(int u, int v) {
e[cnt].to = v;
e[cnt].next = head[u];
head[u] = cnt++;
}
void dfs1(int fa, int u) {
sons[u] = 1;
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].to;
if(v != fa) {
dfs1(u, v);
sons[u] += sons[v];
down[u] += down[v] + sons[v];
}
}
}
void dfs2(int fa, int u) {
for(int i = head[u]; ~i; i = e[i].next) {
int v = e[i].to;
if(v != fa) {
up[v] = up[u] + (n - sons[u]) + (sons[u] - sons[v]) + (down[u] - down[v] - sons[v]);
dfs2(u, v);
}
}
}
int main() {
scanf("%d", &n);
memset(head, -1, sizeof head);
for(int i = 1; i < n; i++) {
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
dfs1(0, 1);
dfs2(0, 1);
for(int i = 1; i <= n; i++) {
printf("%lld\n", up[i] + down[i]);
}
return 0;
}

51Nod - 1405 树的距离之和(树形DP)的更多相关文章

  1. 51nod 1405 树的距离之和 树形dp

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB   收藏  关注 给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之和. Input ...

  2. 51Nod 1405 树的距离之和(dp)

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 给定一棵无根树,如果它有n个节点,节点编号从1到n, 求随意两点之间的距离( ...

  3. 51Nod 1405 树的距离之和 (树dp)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 中文题面不解释了,两次dfs,第一次自下向上,第二次自上 ...

  4. 51nod 1405 树的距离之和(dfs)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 题意: 思路: 先求出所有点到根节点的距离,需要维护每棵子树的大小 ...

  5. 51 nod 1405 树的距离之和

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题   给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之 ...

  6. [51NOD1405] 树的距离之和(树DP)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 (1)我们给树规定一个根.假设所有节点编号是0-(n-1 ...

  7. BZOJ5123 线段树的匹配(树形dp)

    线段树的任意一棵子树都相当于节点数与该子树相同的线段树.于是假装在树形dp即可,记忆化搜索实现,有效状态数是logn级别的. #include<iostream> #include< ...

  8. 1113: [视频]树形动态规划(TreeDP)8:树(tree)(树形dp状态设计总结)

    根据最近做的几道树形dp题总结一下规律.(从这篇往前到洛谷 P1352 ) 这几道题都是在一颗树上,然后要让整棵树的节点或边 满足一种状态.然后点可以影响到相邻点的这种状态 然后求最小次数 那么要从两 ...

  9. [CEOI2007]树的匹配Treasury(树形DP+高精)

    题意 给一棵树,你可以匹配有边相连的两个点,问你这棵树的最大匹配时多少,并且计算出有多少种最大匹配. N≤1000,其中40%的数据答案不超过 108 题解 显然的树形DP+高精. 这题是作为考试题考 ...

随机推荐

  1. 关于mysqldump备份非事务表的注意事项

      Preface       We're used to get a logical backup set(whole instance) by simply specifying "-- ...

  2. python学习总结---文件操作

    # 文件操作 ### 目录管理(os) - 示例 ```python # 执行系统命令 # 清屏 # os.system('cls') # 调出计算器 # os.system('calc') # 查看 ...

  3. ironic baremetal rescue process

    1.用户调用Nova的rescue函数 nova/virt/ironic/driver.py class IronicDriver(virt_driver.ComputeDriver): ...... ...

  4. MySQL事物相关学习

    总结下最近对MySQL数据库的认识 Q:在手动开启事物后,commit失败是否需要显示的rollback? A:在网上查了不少资料,没有查到明确的答案.问了身边的朋友,朋友也不太了解,不过均表示显示的 ...

  5. ZOJ 3606 Lazy Salesgirl ( 线段树 + 思路 )

    卖切糕的小女孩 http://www.cnblogs.com/wuyiqi/archive/2012/04/28/2474672.html #include <cstdio> #inclu ...

  6. linux常见的编码转换

    1.如何界定是utf-8编码还是其他如 ANSI 或者gb2312编码 以“浙”这个汉字为例,用16进制编码查看时,显示 D5 E3 为2个字节,则为 ansi或者gb2312编码 "苏&q ...

  7. ls目录结构

    命令ls ls -l = ll -l 详细信息-a 查看隐藏的文件或目录-d 只看目录本身,不列出目录下面的文件和目录 一起使用一般 ls -ld-t 以时间先后排序-i 显示文件节点-h 显示字节大 ...

  8. 性能优化-使用 RAIL 模型评估性能

    RAIL 是一种以用户为中心的性能模型.每个网络应用均具有与其生命周期有关的四个不同方面,且这些方面以不同的方式影响着性能: TL;DR 以用户为中心:最终目标不是让您的网站在任何特定设备上都能运行很 ...

  9. HDU 1863 畅通工程 -Kruskal模版

    畅通工程 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  10. bzoj1266 [AHOI2006]上学路线route floyd建出最短路图+最小割

    1266: [AHOI2006]上学路线route Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2490  Solved: 898[Submit][S ...