KM算法(理解篇)
转载:https://www.cnblogs.com/logosG/p/logos.html(很好,很容易理解)
一、匈牙利算法
匈牙利算法用于解决什么问题?
匈牙利算法用于解决二分图的最大匹配问题。
什么是二分图?我们不妨来考虑这样一个问题,在一家公司里,有员工A,B,C,有三种工作a,b,c,如果员工和工作之间有线相连,则代表员工能胜任这份工作。
如图所示,员工A能胜任a,c工作,员工B能胜任a,b,c工作,而员工C只能胜任c工作。
上图就是所谓的“二分图”(请忽略图中箭头),简单的说,上图可划分为两个集合{员工},{工作},两个集合之间的元素可以相连,同一个集合内的元素不能相连。
下面请解决这样一个问题:请给出一个方案,让尽可能多的员工有不同的工作做。“匈牙利算法”的出现就是为了解决这个问题。
下面给出这个问题的解决方案:(读者看到这里可能会想,解决这个问题不是很简单吗?A→a,B→b,C→c不就好了?请注意:任何算法的给出都是为了规整化一个问题的解决步骤,其目的是为了在问题规模越来越大时算法对其仍然适用,如果公司有10个员工或者更多,读者想必不能一眼看出答案,此时,算法的作用便体现出来了。)
我们先帮A找工作做,不妨先帮A连上a(红线表示此时两者已经匹配),表示A去做a工作。
接下来我们帮B找工作做,B的第一条线跟a相连,B也想做工作a。
这时候就发生了冲突(collision),如何解决呢?
“匈牙利算法”指出 通过一条增广路径,通过取反操作,我们就能匹配更多的点。
什么是增广路径?增广路径是指,由一个未匹配的顶点开始,经过若干个匹配顶点,最后到达对面集合的一个未匹配顶点的路径,即这条路径将两个不同集合的两个未匹配顶点通过一系列匹配顶点相连。
比如此题中,B想做工作a,于是A想着换一个工作,我们连上A,c。
如图,B→a→A→c 其中B,c未匹配,A,a已匹配,按照定义,这就是一条增广路径,我们对其进行取反操作,就变成了下图。
取反操作为我们带来了什么?原本只有一边匹配,现在有两边匹配了,而且冲突也解决了,这就是匈牙利算法的妙处,我们能通过不停的寻找这样一条增广路径,从而找到二分图的最大匹配。
下面我们继续寻找增广路径。
最终,我们得到了一个最大匹配:A匹配a,B匹配b,C匹配c,就算集合中的元素很多很多,我们仍能通过匈牙利算法得到该二分图的最大匹配。
二、KM算法
现在我们来考虑另外一个问题:如果每个员工做每件工作的效率各不相同,我们如何得到一个最优匹配使得整个公司的工作效率最大呢?
这种问题被称为带权二分图的最优匹配问题,可由KM算法解决。
比如上图,A做工作a的效率为3,做工作c的效率为4......以此类推。
不了解KM算法的人如何解决这个问题?我们只需要用匈牙利算法找到所有的最大匹配,比较每个最大匹配的权重,再选出最大权重的最优匹配即可。这不失为一个解决方案,但是,如果公司员工的数量越来越多,此种算法的实行难度也就越来越大,我们必须另辟蹊径:KM算法。
KM算法解决此题的步骤如下所示:
1.首先对每个顶点赋值,将左边的顶点赋值为最大权重,右边的顶点赋值为0。
如图,我们将顶点A赋值为其两边中较大的4。
2.进行匹配,我们匹配的原则是:只与权重相同的边匹配,若是找不到边匹配,对此条路径的所有左边顶点-1,右边顶点+1,再进行匹配,若还是匹配不到,重复+1和-1操作。(这里看不懂可以跳过,直接看下面的操作,之后再回头来看这里。)
对A进行匹配,符合匹配条件的边只有Ac边。
匹配成功!
接下来我们对B进行匹配,顶点B值为3,Bc边权重为3,匹配成~ 等等,A已经匹配c了,发生了冲突,怎么办?我们这时候第一时间应该想到的是,让B换个工作,但根据匹配原则,只有Bc边 3+0=0 满足要求,于是B不能换边了,那A能不能换边呢?对A来说,也是只有Ac边满足4+0=4的要求,于是A也不能换边,走投无路了,怎么办?
从常识的角度思考:其实我们寻找最优匹配的过程,也就是帮每个员工找到他们工作效率最高的工作,但是,有些工作会冲突,比如现在,B员工和A员工工作c的效率都是最高,这时我们应该让A或者B换一份工作,但是这时候换工作的话我们只能换到降低总体效率值的工作,也就是说,如果令R=左边顶点所有值相加,若发生了冲突,则最终工作效率一定小于R,但是,我们现在只要求最优匹配,所以,如果A换一份工作降低的工作效率比较少的话,我们是能接受的(对B同样如此)。
在KM算法中如何体现呢?
现在参与到这个冲突的顶点是A,B和c,令所有左边顶点值-1,右边顶点值+1,即 A-1,B-1. c+1,结果如下图所示。
我们进行了上述操作后会发现,若是左边有n个顶点参与运算,则右边就有n-1个顶点参与运算,整体效率值下降了1*(n-(n-1))=1,而对于A来说,Ac本来为可匹配的边,现在仍为可匹配边(3+1=4),对于B来说,Bc本来为可匹配的边,现在仍为可匹配的边(2+1=4),我们通过上述操作,为A增加了一条可匹配的边Aa,为B增加了一条可匹配的边Ba。
现在我们再来匹配,对B来说,Ba边 2+0=2,满足条件,所以B换边,a现在为未匹配状态,Ba匹配!
我们现在匹配最后一条边C,Cc 5+1!=5,C边无边能匹配,所以C-1。
现在Cc边 4+1=5,可以匹配,但是c已匹配了,发生冲突,C此时不能换边,于是便去找A,对于A来说,Aa此时也为可匹配边,但是a已匹配,A又去找B。
B现在无边可以匹配了,2+0!=1 ,现在的路径是C→c→A→a→B,所以A-1,B-1,C-1,a+1,c+1。如下图所示。
对于B来说,现在Bb 1+0=1 可匹配!
使用匈牙利算法,对此条路径上的边取反。
如图,便完成了此题的最优匹配。
读者可以发现,这题中冲突一共发生了3次,所以我们一共降低了3次效率值,但是我们每次降低的效率值都是最少的,所以我们完成的仍然是最优匹配!
这就是KM算法的整个过程,整体思路就是:每次都帮一个顶点匹配最大权重边,利用匈牙利算法完成最大匹配,最终我们完成的就是最优匹配!
KM算法(理解篇)的更多相关文章
- KM算法(运用篇)
传送门:KM算法---理解篇 最佳匹配 什么是完美匹配 如果一个二分图,X部和Y部的顶点数相等,若存在一个匹配包含X部与Y部的所有顶点,则称为完美匹配. 换句话说:若二分图X部的每一个顶点都与Y中的一 ...
- km算法的个人理解
首先相对于上个blog讲的匈牙利算法用于解决无权二分图的最佳匹配,km算法则是在匈牙利算法基础上更进一层的,每条边增加了权值后,真的开始看时有些无厘头,觉得没有什么好方法,但两位牛人Kuhn-Munk ...
- uva11383 Golden Tiger Claw 深入理解km算法
/** 题目: uva11383 Golden Tiger Claw 深入理解km算法 链接:https://vjudge.net/problem/UVA-11383 题意:lv 思路:lrj训练指南 ...
- KM算法萌新讲解篇
KM算法 首先了解问题:也就是最大权值匹配: 二分图里,边带了权值,求整幅图里匹配最大/最小的权值 因为接触匈牙利算法的时候看的是找对象系列的博文,所以也自己写一发找对象的博文吧: 算法背景: 信 ...
- 匈牙利算法、KM算法
PS:其实不用理解透增广路,交替路,网上有对代码的形象解释,看懂也能做题,下面我尽量把原理说清楚 基本概念 (部分来源.部分来源) 二分图: 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相 ...
- HDU-2255(KM算法)
HDU-2255 题目意思转化之后就是,给你一个二分图(也称 二部图) ,要求选择一些边让左边的点都对应左边的某一个点!该问题也叫做二分图最大匹配.所以可以用KM算法来做这道题.KM前提你要理解匈牙利 ...
- 二分图最大权完美匹配KM算法
KM算法二分图 KM求得二分图与普通二分图的不同之处在于:此二分图的每条边(男生女生)上都附了权值(好感度).然后,求怎样完美匹配使得权值之和最大. 这,不止一般的麻烦啊. 可以通过一个期望值来求. ...
- 二分图最大权匹配——KM算法
前言 这东西虽然我早就学过了,但是最近才发现我以前学的是假的,心中感慨万千(雾),故作此篇. 简介 带权二分图:每条边都有权值的二分图 最大权匹配:使所选边权和最大的匹配 KM算法,全称Kuhn-Mu ...
- 【7.18总结】KM算法
先贴代码,参考博客来源于:https://blog.csdn.net/zyy173533832/article/details/11519291#commentBox 例题:HDU 2255 题意:n ...
随机推荐
- VS2013 ERROR SCRIPT5009: “WebForm_AutoFocus”未定义
提示错误: <script type="text/javascript">//<![CDATA[WebForm_AutoFocus('txtcUserID');/ ...
- Java开源中文分词类库
IKAnalyzer IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包.从2006年12月推出1.0版开始,IKAnalyzer已经推出了3个大版本.最初,它是以开 ...
- C++中的一类临时对象
类名(参数名)这样的对象是临时对象,不能取地址,不能被引用,不过可以给同类型的其他对象赋值,该临时对象定以后可以进行一次操作,然后立即销毁. 当我们定义一个对象以后并不想立即给它赋初值,而是以后给它赋 ...
- UITextField的文本框部分文本以*的方式来显示
#import "AppDelegate.h" @interface AppDelegate ()<UITextFieldDelegate>// 添加代理协议 @end ...
- python pip ez_setup.py
#!/usr/bin/env python """Bootstrap setuptools installation To use setuptools in your ...
- ROS Learning-003 beginner_Tutorials 创建ROS工作空间
ROS Indigo beginner_Tutorials-02 创建ROS工作空间 我使用的虚拟机软件:VMware Workstation 11 使用的Ubuntu系统:Ubuntu 14.04. ...
- Mat表达式
利用C++中的运算符重载,Opencv2中引入了Mat运算表达式.这一新特点使得使用c++进行编程时,就如同写Matlab脚本. 例如: 如果矩阵A和B大小相同,则可以使用如下表达式: C=A+B+1 ...
- SDUT 3376 数据结构实验之查找四:二分查找
数据结构实验之查找四:二分查找 Time Limit: 20MS Memory Limit: 65536KB Submit Statistic Problem Description 在一个给定的无重 ...
- 一劳永逸搭建android开发环境(android官网reference sample api tutorial全下载)
[摘要]本文简单介绍了android开发环境的搭建,重点介绍了SDK manager和AVD升级问题:并提供了android reference,sample,api,及docs的下载信息. [1]为 ...
- ServletContext接口(六)
javax.servlet.ServletContext接口 ServletContext(上下文)是公用的,就是.net中的application,主要用到的就是全局set设置值,get获取值,ja ...