Simon has a prime number x and an array of non-negative integers a1, a2, ..., an.

Simon loves fractions very much. Today he wrote out number  on a piece of paper. After Simon led all fractions to a common denominator and summed them up, he got a fraction: , where number t equals xa1 + a2 + ... + an. Now Simon wants to reduce the resulting fraction.

Help him, find the greatest common divisor of numbers s and t. As GCD can be rather large, print it as a remainder after dividing it by number 1000000007 (109 + 7).

The first line contains two positive integers n and x (1 ≤ n ≤ 105, 2 ≤ x ≤ 109) — the size of the array and the prime number.

The second line contains n space-separated integers a1, a2, ..., an (0 ≤ a1 ≤ a2 ≤ ... ≤ an ≤ 109).

Print a single number — the answer to the problem modulo 1000000007 (109 + 7).

Examples

Input
2 2
2 2
Output
8
Input
3 3
1 2 3
Output
27
Input
2 2
29 29
Output
73741817
Input
4 5
0 0 0 0
Output
1

Note

In the first sample . Thus, the answer to the problem is 8.

In the second sample, . The answer to the problem is 27, as 351 = 13·27, 729 = 27·27.

In the third sample the answer to the problem is 1073741824 mod 1000000007 = 73741817.

In the fourth sample . Thus, the answer to the problem is 1.

思路是主要的进制的思想

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
#include<cmath>
#define mod 1000000007 const int maxn=1e5+;
typedef long long ll;
using namespace std;
ll quickpow(ll a,ll b)
{
ll ans=;
while(b)
{
if(b&)
ans=(ans*a)%mod;
b>>=;
a=(a*a)%mod;
}
return ans;
}
ll a[maxn];
int main()
{
ll n,x;
cin>>n>>x;
ll s=;
for(int t=;t<n;t++)
{
scanf("%lld",&a[t]);
s+=a[t];
}
for(int t=;t<n;t++)
{
a[t]=s-a[t];
}
ll ans,cnt=;
sort(a,a+n);
a[n]=-;
for(int t=;t<=n;t++)
{
if(a[t]!=a[t-])
{
if(cnt%x)
{
ans=a[t-];
break;
}
else
{
cnt/=x;
a[t-]++;
t--;
}
}
else
{
cnt++;
}
}
ll ss=min(s,ans);
cout<<quickpow(x,ss)<<endl;
return ;
}

CodeForces - 359C-Prime Number的更多相关文章

  1. CodeForce 359C Prime Number

    Prime Number CodeForces - 359C Simon has a prime number x and an array of non-negative integers a1,  ...

  2. Prime Number CodeForces - 359C (属于是数论)

    Simon has a prime number x and an array of non-negative integers a1, a2, ..., an. Simon loves fracti ...

  3. Codeforces H. Prime Gift(折半枚举二分)

    题目描述: Prime Gift time limit per test 3.5 seconds memory limit per test 256 megabytes input standard ...

  4. FZU 1649 Prime number or not米勒拉宾大素数判定方法。

    C - Prime number or not Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  5. 每日一九度之 题目1040:Prime Number

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6732 解决:2738 题目描述: Output the k-th prime number. 输入: k≤10000 输出: The k- ...

  6. LintCode-Kth Prime Number.

    Design an algorithm to find the kth number such that the only prime factors are 3, 5, and 7. The eli ...

  7. Codeforces 55D Beautiful Number

    Codeforces 55D Beautiful Number a positive integer number is beautiful if and only if it is divisibl ...

  8. 10 001st prime number

    这真是一个耗CPU的运算,怪不得现在因式分解和素数查找现在都用于加密运算. By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13 ...

  9. CodeForces 432C Prime Swaps

    Description You have an array a[1], a[2], ..., a[n], containing distinct integers from 1 to n. Your ...

  10. [LeetCode] Prime Number of Set Bits in Binary Representation 二进制表示中的非零位个数为质数

    Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime ...

随机推荐

  1. UAC(User Agent Client) 和 UAS(User Agent Server)

    SIP协议采用Client/Server模型.每一个请求(Request)触发服务器的一个操作:每个操作被称为方法(Method):每个请求除了指明具体方法外,还携带了一系列的头域(Header fi ...

  2. Solr搜索的排序打分规则探讨

    使用Solr搭建搜索引擎很容易,但是如何制定合理的打分规则(boost)做排序却是一个很头痛的事情.Solr本身的排序打分规则是继承自Lucene的文本相关度的打分即boost,这一套算法对于通用的提 ...

  3. java中一些常用的英语

     abstract (关键字  ) 抽象  ['.bstr.kt]  access vt.访问,存取  ['.kses]'(n.入口,使用权)  algorithm n.算法  ['.lg.rie ...

  4. 容器控件JPanel的使用

    -----------------siwuxie095 工程名:TestUI 包名:com.siwuxie095.ui 类名:TestPanel.java 工程结构目录如下: 在默认窗体 JFrame ...

  5. __get(),__set(),__isset(),__unset()

    __get(),__set(),__isset(),__unset() 在给不可访问属性赋值时,__set()会被调用读取不可访问属性的值时,__get()会被调用 当对不可访问属性调用isset() ...

  6. 面试题:hibernate第三天 一对多和多对多配置

    1.1 一对多XML关系映射 1.1.1 客户配置文件: <?xml version="1.0" encoding="UTF-8"?> <!D ...

  7. 前端学习笔记2017.6.12 HTML的结构以及xhtml、html、xml的区别

    HTML的结构 一个HTML文档可分为几个部分,如下图所示: DOCTYPE部分.head部分和body部分 DOCTYPE部分,这个很重要,可以理解为不同的DOCTYPE意味着不同的html标准,因 ...

  8. 两个进程之间的通讯——pipe 管道

    在实际工作中,已经编辑好了NIPT_analysis的软件,该软件一般的输入文件是sam文件,但是为了集成进入测序仪器,需要直接从比对软件的标准输出中读取sam文件,省去了比对软件和NIPT_anal ...

  9. swing JCheckBox 更换复选框样式

    Java Swing - 如何自定义JCheckBox复选标记图标 摘自 https://www.w3cschool.cn/java/codedemo-484050311.html import ja ...

  10. Entity Framework Tutorial Basics(15):Querying with EDM

    Querying with EDM: We have created EDM, DbContext, and entity classes in the previous sections. Here ...