POJ Layout
Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u
Description
Some cows like each other and want to be within a certain distance
of each other in line. Some really dislike each other and want to be
separated by at least a certain distance. A list of ML (1 <= ML <=
10,000) constraints describes which cows like each other and the
maximum distance by which they may be separated; a subsequent list of MD
constraints (1 <= MD <= 10,000) tells which cows dislike each
other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance
between cow 1 and cow N that satisfies the distance constraints.
Input
Lines 2..ML+1: Each line contains three space-separated positive
integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must
be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated
positive integers: A, B, and D, with 1 <= A < B <= N. Cows A
and B must be at least D (1 <= D <= 1,000,000) apart.
Output
1: A single integer. If no line-up is possible, output -1. If cows 1
and N can be arbitrarily far apart, output -2. Otherwise output the
greatest possible distance between cows 1 and N.
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint
There are 4 cows. Cows #1 and #3 must be no more than 10 units
apart, cows #2 and #4 must be no more than 20 units apart, and cows #2
and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define INF 9999999 int dis[1010];
int cnt;
int n, ml, md; struct N
{
int u;
int v;
int w;
}s[200005]; void add(int u, int v, int w )
{
s[cnt].u=u;
s[cnt].v=v;
s[cnt++].w=w;
} void bellman_ford()
{
int i, j;
for(i=1; i<=n; i++)
dis[i]=INF;
dis[1]=0; for(i=2; i<=n; i++ )
{
int flag=0;
for(j=0; j<cnt; j++ ) //检查每条边
{
if( dis[s[j].v] > dis[s[j].u] + s[j].w )
{
dis[s[j].v] = dis[s[j].u]+s[j].w ;
flag=1;
}
}
if(flag==0)
break;
}
for(i=0; i<cnt; i++)
{
if(dis[s[i].v] > dis[s[i].u]+s[i].w )
break;
}
if(i<cnt)
printf("-1\n");
else
{
if( dis[n]==INF )
printf("-2\n");
else
printf("%d\n", dis[n] );
}
} int main()
{
int i, j;
int u, v, w;
while(scanf("%d %d %d", &n, &ml, &md)!=EOF)
{
cnt=0;
for(i=0; i<ml; i++)
{
scanf("%d %d %d", &u, &v, &w ); //亲密的牛 最大距离
if(u>v)
{
u=u^v; v=v^u; u=u^v; //还可以这样写: u^=v^=u^=v ;
}
add(u, v, w);
}
for(j=0; j<md; j++)
{
scanf("%d %d %d", &u, &v, &w ); //排斥的牛 最小距离
if(u<v)
{
u=u^v; v=v^u; u=u^v; // u^=v^=u^=v ;
}
add(u, v, -w);
}
bellman_ford();
}
return 0;
}
POJ Layout的更多相关文章
- poj Layout 差分约束+SPFA
题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...
- POJ 3169 Layout(差分约束啊)
题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...
- POJ 3169.Layout 最短路
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11612 Accepted: 5550 Descripti ...
- poj 3169 Layout 差分约束模板题
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6415 Accepted: 3098 Descriptio ...
- POJ 3169 Layout (差分约束系统)
Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...
- POJ 3169 Layout (spfa+差分约束)
题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...
- poj 3169 Layout
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8610 Accepted: 4147 Descriptio ...
- POJ 3169 Layout (图论-差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6574 Accepted: 3177 Descriptio ...
- POJ 3167 Layout(差分约束)
题面 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
随机推荐
- Python Windows文件操作
获得目录和文件名 os.getenv()获取环境变量 os.putenv()设置环境变量 os.getcwd() 获得当前目录 os.chdir(‘要设置的当前目录’) os.listdir() 返回 ...
- nginx proxy cache配置和清理
1.nginx需要编译Purge模块 2.nginx.conf 配置cache: proxy_cache_path /home/cache/xxx levels=1:2 keys_zone=cac ...
- Android设计模式(十五)--备忘录模式
在Android中用于保存Activity状态的onSaveInstanceState()和恢复Activity状态的onRestoreInstanceState(), 这样的算不算是一种备忘录模式呢 ...
- selenium实现在新窗口打开链接
问题:页面代码中不存在target="_blank",怎么实现点击一个按钮,在新窗口中打开? WebElement link = element.findElement(By.ta ...
- thrift实例
Thrift实例 Apache thrift是 Facebook 实现的一种高效的.支持多种编程语言的远程服务调用的框架. 它采用接口描述语言定义并创建服务,支持可扩展的跨语言服务开发,所包含的代码生 ...
- TP的分页加查询
1.查询显示数据库的内容 控制器里的内容 public function shouye() { $n = M("car"); $arr = $n->select(); $th ...
- mysql 分组加行号
SELECT end AS row_num_v_, case when @v <> _apply.PATIENT_ID then @v := _apply.PATIENT_ID else ...
- POJ 1694 An Old Stone Game【递归+排序】
链接: http://poj.org/problem?id=1694 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=27454#probl ...
- php自定义函数: amr转mp3格式
<?php function amr2mp3($file){ if (file_exists($file . '.mp3') == true) { return; } else { $param ...
- 我的Android进阶之旅------>如何获取Android控件的宽和高
本文转载于:http://blog.csdn.net/johnny901114/article/details/7839512 我们都知道在onCreate()里面获取控件的高度是0,这是为什么呢?我 ...