A - Layout

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance
of each other in line. Some really dislike each other and want to be
separated by at least a certain distance. A list of ML (1 <= ML <=
10,000) constraints describes which cows like each other and the
maximum distance by which they may be separated; a subsequent list of MD
constraints (1 <= MD <= 10,000) tells which cows dislike each
other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance
between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive
integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must
be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated
positive integers: A, B, and D, with 1 <= A < B <= N. Cows A
and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line
1: A single integer. If no line-up is possible, output -1. If cows 1
and N can be arbitrarily far apart, output -2. Otherwise output the
greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units
apart, cows #2 and #4 must be no more than 20 units apart, and cows #2
and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

 
 
算法分析:
      不知道为什么用SPFA 会超时,改成bellman_ford 算法了就行了,并且需要注意 差分约束 建图时 两个点是否眼交换!
   二题目里却说是有大小顺序的,但是不交换顺序就错了!(我用位运算交换顺序,据说会节省时间,但是刘汝佳的树立却说不建议这样写,不知道为什    么?)
 
 
 
Accepted:
 
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define INF 9999999 int dis[1010];
int cnt;
int n, ml, md; struct N
{
int u;
int v;
int w;
}s[200005]; void add(int u, int v, int w )
{
s[cnt].u=u;
s[cnt].v=v;
s[cnt++].w=w;
} void bellman_ford()
{
int i, j;
for(i=1; i<=n; i++)
dis[i]=INF;
dis[1]=0; for(i=2; i<=n; i++ )
{
int flag=0;
for(j=0; j<cnt; j++ ) //检查每条边
{
if( dis[s[j].v] > dis[s[j].u] + s[j].w )
{
dis[s[j].v] = dis[s[j].u]+s[j].w ;
flag=1;
}
}
if(flag==0)
break;
}
for(i=0; i<cnt; i++)
{
if(dis[s[i].v] > dis[s[i].u]+s[i].w )
break;
}
if(i<cnt)
printf("-1\n");
else
{
if( dis[n]==INF )
printf("-2\n");
else
printf("%d\n", dis[n] );
}
} int main()
{
int i, j;
int u, v, w;
while(scanf("%d %d %d", &n, &ml, &md)!=EOF)
{
cnt=0;
for(i=0; i<ml; i++)
{
scanf("%d %d %d", &u, &v, &w ); //亲密的牛 最大距离
if(u>v)
{
u=u^v; v=v^u; u=u^v; //还可以这样写: u^=v^=u^=v ;
}
add(u, v, w);
}
for(j=0; j<md; j++)
{
scanf("%d %d %d", &u, &v, &w ); //排斥的牛 最小距离
if(u<v)
{
u=u^v; v=v^u; u=u^v; // u^=v^=u^=v ;
}
add(u, v, -w);
}
bellman_ford();
}
return 0;
}

POJ Layout的更多相关文章

  1. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  2. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  3. POJ 3169.Layout 最短路

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11612   Accepted: 5550 Descripti ...

  4. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  5. POJ 3169 Layout (差分约束系统)

    Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...

  6. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

  7. poj 3169 Layout

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8610   Accepted: 4147 Descriptio ...

  8. POJ 3169 Layout (图论-差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6574   Accepted: 3177 Descriptio ...

  9. POJ 3167 Layout(差分约束)

    题面 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

随机推荐

  1. VSCode调试.net core 2.0 输出窗口乱码

    Q:输出窗口乱码 A:修改.vscode文件夹下,tasks.json文件,具体内容见图

  2. root 执行过程权限问题

    mysql 1449 : The user specified as a definer ('root'@'%') does not exist 解决方法 权限问题,授权 给 root  所有sql ...

  3. 使用javac,手动编译一个java文件的方法

    参考<Tomcat与Java Web开发技术详解>中的命令: javac -classpath c:\tomcat\lib\servlet-api.jar                  ...

  4. POJ 1654 area 解题

    Description You are going to compute the area of a special kind of polygon. One vertex of the polygo ...

  5. IIS7设置默认页

    一般用ASP.NET创建的网站默认页都是Default.aspx,不需要设置. 但是如果有网站的起始页不是Default.aspx,就需要在IIS里设置了. IIS7的设置方法和IIS6的不一样: 在 ...

  6. Harbor的搭建(vmware企业级docker镜像私服)

    1.下载harbor,地址https://github.com/vmware/harbor2.进入harbor-master/Deploy目录,修改harbor.cfg文件,主要修改以下信息      ...

  7. ansible的异步执行

    ansible任务的异步执行 96 茶客furu声 关注 2016.07.12 01:40* 字数 458 阅读 1777评论 0喜欢 4 ansible方便在于能批量下发,并返回结果和呈现.简单.高 ...

  8. python学习 02 元组

    元组和列表除了能不能修改外 定义单一元组还需要加逗号

  9. Linux 在不重启的情况下识别新挂载的磁盘

    在使用 Linux 时,有时候会因为初始时磁盘空间分配估计不足,使用中需要将挂载点扩容的情况,这就需要我们挂载新的磁盘.但是如果我们在 Linux 运行过程中挂载磁盘, Linux 又不能在不重启的情 ...

  10. 在Linux下搭建Git服务器步骤

    环境: 服务器 CentOS6.6 + git(version 1.7.1) 客户端 Windows10 + git(version 2.8.4.windows.1)  ① 安装 Git Linux ...