ConditionObject 

 ConditionObject是AQS中的内部类,提供了条件锁的同步实现,实现了Condition接口,并且实现了其中的await(),signal(),signalALL()等方法。

ConditionObject主要是为并发编程中的同步提供了等待通知的实现方式,可以在不满足某个条件的时候挂起线程等待。直到满足某个条件的时候在唤醒线程。

  在一个AQS同步器中,可以定义多个Condition,只需要多次lock.newCondition(),每次都会返回一个新的ConditionObject对象。在ConditionObject中,通过一个等待队列来维护条线等待的线程。所以在一个同步器中可以有多个等待队列,他们等待的条件是不一样的。

条件队列

  条件队列是一个FIFO的队列,在队列的每个节点都包含了一个线程引用。该线程就是在Condition对象上等待的线程。这里的节点和AQS中的同步队列中的节点一样,使用的都是AbstractQueuedSynchronizer.Node类。每个调用了condition.await()的线程都会进入到条件队列中去。在Condition中包含了firstWaiter和lastWaiter,每次加入到条件队列中的线程都会加入到条件队列的尾部,来构成一个FIFO的条件队列。

方法分析

await()方法的具体实现

public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();  //把当前线程的节点加入到CONDITION队列中
int savedState = fullyRelease(node); //由于调用await()方法的线程是已经获取了锁的,所以在加入到CONDITION队列之后,需要去释放锁,并且唤醒后继节点线程
int interruptMode = 0;
while (!isOnSyncQueue(node)) { //判断该节点是否在CLH队列中,不在 说明它还没有竞争锁的资格,所以继续将自己沉睡,线程进入自旋。
LockSupport.park(this);  //挂起当前线程,当别的线程调用了signal(),并且是当前线程被唤醒的时候才从park()方法返回
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
//出了while循环,代表线程被唤醒,并且已经将该node从CONDITION队列transfer到了CLH队列中
//acquireQueued在队列中获取锁,如果竞争不到还是会阻塞当前线程,并且在上面while循环等待的过程中没有发生异常,则修改interruptMode状态为REINTERRUPT
if (acquireQueued(node, savedState) && interruptMode != THROW_IE) //当被唤醒后,该线程会尝试去获取锁,只有获取到了才会从await()方法返回,否则的话,会挂起自己
interruptMode = REINTERRUPT; //该节点调用transferAfterCancelledWait添加到CLH队列中的,此时该节点的nextWaiter不为null,需要调用unlinkCancelledWaiters将该节点从CONDITION队列中删除,该节点的状态为0
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters(); //如果interruptMode不为0,则代表该线程在上面过程中发生了中断或者抛出了异常,则调用reportInterruptAfterWait方法在此处抛出异常
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}

 addConditionWaiter( )

 private Node addConditionWaiter() {
Node t = lastWaiter;
if (t != null && t.waitStatus != Node.CONDITION) { //首先判断lastWaiter节点是否为空,或者是否是处于条件等待,如果不是的话则把它从等待队列中删除。
unlinkCancelledWaiters();
t = lastWaiter;
}
Node node = new Node(Thread.currentThread(), Node.CONDITION); //创建一个node节点,状态为CONDITION
if (t == null) //把当前线程构建的节点加入到CONDITION队列中去,并且返回当前节点
firstWaiter = node;
else
t.nextWaiter = node;
lastWaiter = node;
return node;
}

fullyRelease( ) 

//完全释放锁,释放成功则返回,失败则将当前节点的状态设置成cancelled表示当前节点失效
final int fullyRelease(Node node) {
boolean failed = true;
try {
int savedState = getState(); //获取当前锁重入的次数
if (release(savedState)) { //释放锁
failed = false; //释放成功
return savedState;
} else {
throw new IllegalMonitorStateException();
}
} finally {
if (failed)
node.waitStatus = Node.CANCELLED; //释放锁失败,则当前节点的状态变为cancelled(此时该节点在CONDITION队列中)
}
}

signal()

//对CONDITION队列中从首部开始的第一个CONDITION状态的节点,执行transferForSignal操作,将node从CONDITION队列中转换到CLH队列中,同时修改CLH队列中原先尾节点的状态
private void doSignal(Node first) {
do {
//当前循环将first节点从CONDITION队列transfer到CLH队列
//从CONDITION队列中删除first节点,调用transferForSignal将该节点添加到CLH队列中,成功则跳出循环
if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null;
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
} //唤醒CONDITION队列中首部的第一个CONDITION状态的节点
public final void signal() {
if (!isHeldExclusively()) //判断当前线程是不是独占的持有锁,如果不是,则当前线程不能signal其他线程 。
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null) //CONDITION队列不为null,则doSignal方法将唤醒CONDITION队列中所有的节点线程
doSignal(first);
}

transferForSignal( )

//两步操作,首先enq将该node添加到CLH队列中,其次若CLH队列原先尾节点为CANCELLED或者对原先尾节点CAS设置成SIGNAL失败,则唤醒node节点;
//否则该节点在CLH队列总前驱节点已经是signal状态了,唤醒工作交给前驱节点(节省了一次park和unpark操作)
final boolean transferForSignal(Node node) {    //如果CAS失败,则当前节点的状态为CANCELLED
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false;
Node p = enq(node); //enq将node添加到CLH队列队尾,返回node的前一个节点 //如果p是一个取消了的节点,或者对p进行CAS设置失败,则唤醒node节点,让node所在线程进入到acquireQueue方法中,重新进行相关操作
//否则,由于该节点的前驱节点已经是signal状态了,不用在此处唤醒await中的线程,唤醒工作留给CLH队列中前驱节点
int ws = p.waitStatus;
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);  //唤醒刚加入到同步队列的线程,被唤醒之后,该线程才能从await()方法的park()中返回。
return true;
}

signalAll( ) 

public final void signalAll() {
//查看当前线程是否独占锁,若不是,则当前线程没有权限执行signalAll操作,抛出异常
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
//唤醒CONDITION队列中所有节点,同时transfer到CLH队列中
if (first != null)
doSignalAll(first);
}
private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null;
do {
//将first节点从CONDITION队列中出队
Node next = first.nextWaiter;
first.nextWaiter = null;
//将first节点在CLH队列中入队,同时可能需要执行unpark操作
transferForSignal(first);
//更新first的指向
first = next;
} while (first != null);
}

条件队列的节点状态

调用条件队列的等待操作,会设置节点的waitingStatus为Condition,标识当前节点正处于条件队列中。条件队列的节点状态转换图如下:

Node的各个状态的主要作用:Cancelled主要是解决线程在持有锁时被外部中断的逻辑,AQS的可中断锁获取方法lockInterrutible()是基于该状态实现的。显式锁必须手动释放锁,尤其是有中断的环境中,一个线程被中断可能仍然持有锁,所以必须注意在finally中unlock。Condition则是支持条件队列的等待操作,是Lock与条件队列关联的基础。Signal是阻塞后继线程的标识,一个等待线程只有在其前驱节点的状态是SIGNAL时才会被阻塞,否则一直执行自旋尝试操作,以减少线程调度的开销。

等待和唤醒操作

条件队列上的等待和唤醒操作,本质上是节点在AQS线程等待队列和条件队列之间相互转移的过程,当需要等待某个条件时,线程会将当前节点添加到条件队列中,并释放持有锁;当某个线程执行条件队列的唤醒操作,则会将条件队列的节点转移到AQS等待队列。每个Condition就是一个条件队列,可以通过Lock的newCondition创建多个等待条件。AQS的条件队列,它的等待和唤起操作流程如下:

  显式条件队列弥补了内置条件队列只能关联一个条件的缺陷,同时继承了Lock对象的公平性。在Condition对象中,与Object的wait/notify/notifyAll对应的扩展方法是await/signal/signallAll,同时它也具有Object的这三个方法,所以使用的时候需要注意使用版本的正确。另外,显式锁必须遵从特定的使用规范,先lock,然后再在finally中unlock,以确保锁必然会被正确释放。

Condition示例

package concurrent;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; /**
* @Description: Condition实例
* @Author: lizhouwei
* @CreateDate: 2018/5/27 16:39
*/
public class ConditionDemo {
private static Lock reentrantLock = new ReentrantLock();
private static Condition condition = reentrantLock.newCondition(); public static void main(String[] args) { ThreadA threadA = new ThreadA("threadA"); reentrantLock.lock();
try {
System.out.println(Thread.currentThread().getName()+" 我拿到锁了");
threadA.start();
System.out.println(Thread.currentThread().getName()+" 我释放锁了");
condition.await();
System.out.println(Thread.currentThread().getName()+" 我又拿到锁了");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
reentrantLock.unlock();
}
} static class ThreadA extends Thread{ public ThreadA(String name) {
super(name);
} public void run() {
reentrantLock.lock();
try {
System.out.println(Thread.currentThread().getName()+"我拿到锁了");
condition.signal();
System.out.println(Thread.currentThread().getName()+"我唤醒其他线程了");
} finally {
reentrantLock.unlock();
}
}
}
}

运行结果

可以看到Condition的执行方式,

  1. 线程1调用reentrantLock.lock时,线程被加入到AQS的等待队列中。
  2. 线程1调用wait方法被调用时,该线程从AQS中移除,对应操作是锁的释放。
  3. 接着线程1马上被加入到Condition的等待队列中,意味着该线程需要signal信号。
  4. 线程2,因为线程1释放锁的关系,被唤醒,并判断可以获取锁,于是线程2获取锁。
  5. 线程2调用signal方法,这个时候Condition的等待队列中只有线程1一个节点,于是它被取出来,并被加入到AQS的等待队列中。 注意,这个时候,线程1 并没有被唤醒。
  6. signal方法执行完毕,线程2调用reentrantLock.unLock()方法,释放锁。这个时候因为AQS中只有线程1,于是,AQS释放锁后按从头到尾的顺序唤醒线程时,线程1被唤醒,于是线程1回复执行。
  7. 直到释放所整个过程执行完毕。

可以看到,整个协作过程是靠结点在AQS的等待队列和Condition的等待队列中来回移动实现的,Condition作为一个条件类,很好的自己维护了一个等待信号的队列,并在适时的时候将结点加入到AQS的等待队列中来实现的唤醒操作。

Java多线程系列 JUC锁07 ConditionObject分析的更多相关文章

  1. Java多线程系列--“JUC锁”07之 LockSupport

    概述 本章介绍JUC(java.util.concurrent)包中的LockSupport.内容包括:LockSupport介绍LockSupport函数列表LockSupport参考代码(基于JD ...

  2. Java多线程系列--“JUC锁”10之 CyclicBarrier原理和示例

    概要 本章介绍JUC包中的CyclicBarrier锁.内容包括:CyclicBarrier简介CyclicBarrier数据结构CyclicBarrier源码分析(基于JDK1.7.0_40)Cyc ...

  3. Java多线程系列--“JUC锁”01之 框架

    本章,我们介绍锁的架构:后面的章节将会对它们逐个进行分析介绍.目录如下:01. Java多线程系列--“JUC锁”01之 框架02. Java多线程系列--“JUC锁”02之 互斥锁Reentrant ...

  4. Java多线程系列--“JUC锁”09之 CountDownLatch原理和示例

    概要 前面对"独占锁"和"共享锁"有了个大致的了解:本章,我们对CountDownLatch进行学习.和ReadWriteLock.ReadLock一样,Cou ...

  5. Java多线程系列--“JUC锁”08之 共享锁和ReentrantReadWriteLock

    概要 Java的JUC(java.util.concurrent)包中的锁包括"独占锁"和"共享锁".在“Java多线程系列--“JUC锁”02之 互斥锁Ree ...

  6. Java多线程系列--“JUC锁”11之 Semaphore信号量的原理和示例

    概要 本章,我们对JUC包中的信号量Semaphore进行学习.内容包括:Semaphore简介Semaphore数据结构Semaphore源码分析(基于JDK1.7.0_40)Semaphore示例 ...

  7. Java多线程系列--“JUC锁”03之 公平锁(一)

    概要 本章对“公平锁”的获取锁机制进行介绍(本文的公平锁指的是互斥锁的公平锁),内容包括:基本概念ReentrantLock数据结构参考代码获取公平锁(基于JDK1.7.0_40)一. tryAcqu ...

  8. Java多线程系列--“JUC锁”05之 非公平锁

    概要 前面两章分析了"公平锁的获取和释放机制",这一章开始对“非公平锁”的获取锁/释放锁的过程进行分析.内容包括:参考代码获取非公平锁(基于JDK1.7.0_40)释放非公平锁(基 ...

  9. Java多线程系列--“JUC锁”04之 公平锁(二)

    概要 前面一章,我们学习了“公平锁”获取锁的详细流程:这里,我们再来看看“公平锁”释放锁的过程.内容包括:参考代码释放公平锁(基于JDK1.7.0_40) “公平锁”的获取过程请参考“Java多线程系 ...

随机推荐

  1. bios文字解释

    很多笔记本电脑用户由于不熟悉bios,导致在需要设置bios时不知如何下手,其实bios基本大同小异,熟悉了以后再遇到bios设置就手到擒来了. 今天我们以笔记本电脑为例,进行bios界面的解读. 1 ...

  2. Android事件的分发

    1 http://blog.csdn.net/guolin_blog/article/details/9097463 2

  3. 固态硬盘(SSD) 和机 械硬盘(HDD) 优缺点比較

    Attribute SSD (Solid State Drive) HDD (Hard Disk Drive) Power Draw / Battery Life (功耗/电池寿命) Less pow ...

  4. zabbix根据graph name 做screen

    下面亲测可用 #!/usr/bin/env python #coding:utf8 import urllib2 import sys import json import argparse #定义通 ...

  5. windows下python安装Numpy、Scipy、matplotlib模块(转载)

    python下载链接     Numpy下载链接 python中Numpy包的安装及使用 Numpy包的安装 准备工作 Python安装 pip安装 将pip所在的文件夹添加到环境变量path路径中 ...

  6. label 标签的用法,点label选中单选、复选框或文本框

    <label>拥有的权限</label> <label class="checkbox" id="privilege_id" st ...

  7. android的DrawerLayout用法

    DrawerLayout的关键点(我认为的)就在于layout文件的layout_gravity属性的值,只有左右,两种选择,不能从上下滑出来,就算有这个效果也不是这个套路弄出来的. <?xml ...

  8. 嵌入式开发之工具---比开发手册更重要的一个命令 man page

    man http://bbs.chinaunix.net/thread-826490-1-1.html http://read.pudn.com/downloads70/ebook/254107/ch ...

  9. ubuntu下搭建的lamp环境新建站点

    这几天刚装了一个ubuntu 16.04桌面版,总之来来回回几遍才基本把环境搭建好,本来用apt-get搭建,结果不知道什么原因16.04版不支持装php5 ,提示源放弃了php5版本,不得不使用ph ...

  10. Android使用JUnit进行单元测试

    前言:为什么要进行单元测试?单元测试能快速是开发者,找到代码中的问题所在,因为是单元测试,所以代码只执行响应的测试单元,执行快解决问题的效率高,同时提高代码的质量. Android中的单元测试可简单分 ...