P3377 【模板】左偏树(可并堆)

如题,一开始有N个小根堆,每个堆包含且仅包含一个数。接下来需要支持两种操作:

操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删除或第x和第y个数在用一个堆内,则无视此操作)

操作2: 2 x 输出第x个数所在的堆最小数,并将其删除(若第x个数已经被删除,则输出-1并无视删除操作)

code:

// luogu-judger-enable-o2
#include <iostream>
#include <cstdio> using namespace std; const int wx=200017; inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
} int n,m;
int val[wx],f[wx],dis[wx];
int ch[wx][3]; int merge(int x,int y){
if(x==0||y==0) return x+y;
if((val[x]>val[y])||(val[x]==val[y]&&x>y))swap(x,y);
ch[x][1]=merge(ch[x][1],y); f[ch[x][1]]=x;
if(dis[ch[x][1]]>dis[ch[x][0]])swap(ch[x][1],ch[x][0]);
dis[x]=dis[ch[x][1]]+1; return x;
} int getf(int x){
while(f[x])x=f[x];
return x;
} void pop(int x){
val[x]=-1;
f[ch[x][1]]=f[ch[x][0]]=0;
merge(ch[x][0],ch[x][1]);
} int main(){
n=read(); m=read();
for(int i=1;i<=n;i++) val[i]=read();
for(int i=1;i<=m;i++){
int opt; opt=read();
if(opt==1){
int x,y; x=read(); y=read();
if(x==y||val[x]==-1||val[y]==-1)continue;
int fx=getf(x); int fy=getf(y);
merge(fx,fy);
}
else{
int x; x=read();
if(val[x]==-1)puts("-1");
else{
int fx=getf(x);
printf("%d\n",val[fx]); pop(fx);
}
}
}
}

模板 可并堆【洛谷P3377】 【模板】左偏树(可并堆)的更多相关文章

  1. 洛谷 - P1552 - 派遣 - 左偏树 - 并查集

    首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...

  2. [note]左偏树(可并堆)

    左偏树(可并堆)https://www.luogu.org/problemnew/show/P3377 题目描述 一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 ...

  3. Monkey King(左偏树 可并堆)

    我们知道如果要我们给一个序列排序,按照某种大小顺序关系,我们很容易想到优先队列,的确很方便,但是优先队列也有解决不了的问题,当题目要求你把两个优先队列合并的时候,这就实现不了了 优先队列只有插入 删除 ...

  4. bzoj2809 [Apio2012]dispatching——左偏树(可并堆)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...

  5. 洛谷 P3377 模板左偏树

    题目:https://www.luogu.org/problemnew/show/P3377 左偏树的模板题: 加深了我对空 merge 的理解: 结构体的编号就是原序列的位置. 代码如下: #inc ...

  6. [luogu3377][左偏树(可并堆)]

    题目链接 思路 左偏树的模板题,参考左偏树学习笔记 对于这道题我是用一个并查集维护出了哪些点是在同一棵树上,也可以直接log的往上跳寻找根节点 代码 #include<cstdio> #i ...

  7. HDU3031 To Be Or Not To Be 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU3031 题意概括 喜羊羊和灰太狼要比赛. 有R次比赛. 对于每次比赛,首先输入n,m,n表示喜羊羊和灰 ...

  8. HDU5818 Joint Stacks 左偏树,可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU5818 题意概括 有两个栈,有3种操作. 第一种是往其中一个栈加入一个数: 第二种是取出其中一个栈的顶 ...

  9. BZOJ 4003: [JLOI2015]城池攻占 左偏树 可并堆

    https://www.lydsy.com/JudgeOnline/problem.php?id=4003 感觉就是……普通的堆啊(暴论),因为这个堆是通过递归往右堆里加一个新堆或者新节点的,所以要始 ...

  10. BZOJ 5494: [2019省队联测]春节十二响 (左偏树 可并堆)

    题意 略 分析 稍微yy一下可以感觉就是一个不同子树合并堆,然后考场上写了一发左偏树,以为100分美滋滋.然而发现自己傻逼了,两个堆一一对应合并后剩下的一坨直接一次合并进去就行了.然鹅我这个sb把所有 ...

随机推荐

  1. AllowsTransparency和WebBrowser兼容性问题解决方案

    AllowsTransparency和System.Windows.Controls.WebBrowser兼容性问题,能看这篇文章,所以原因也不用多说:最根本的就是因为MS对win32底层的WebBr ...

  2. windows下python访问ipv6报错

    错误 Traceback (most recent call last): File , in <module> app.run() File , in run return wsgi.r ...

  3. java.lang.Runtime.exec() Payload Workarounds

    由于Runtime.getRuntime().exec()中不能使用管道符等bash需要的方法,我们需要用进行一次编码 编码工具: 地址: http://jackson.thuraisamy.me/r ...

  4. 01-16委托Func

    在类中编写方法: 在主函数中调用函数: 效果图:

  5. 网页弹出框ClientScript,ScriptManager

    网页调用客户端弹出框 this.ClientScript.RegisterStartupScript(this.GetType(), "message", "<sc ...

  6. openGL一些概念02

    着色器程序 着色器程序对象(Shader Program Object)是多个着色器合并之后并最终链接完成的版本. 如果要使用刚才编译的着色器我们必须把他们链接为一个着色器程序对象,然后在渲染对象的时 ...

  7. IntelliJ IDEA 导入Project

    一.方式一 File---->Close Project 这样的户每次需要import,都要close一次,非常不方便,如果能在File下面岂不是更好? 二.方式二 File---->Se ...

  8. 我的第一个Socket程序-SuperSocket使用入门(二)

    操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操操 辛辛苦苦写那么久的博客,最后手贱点了全屏富文本编辑器 ...

  9. JDBC连接MYSQL,批量执行SQL语句或在执行一个SQL语句之前执行一个SQL语句

    conn = MysqlJdbcUtils.getConnection(); Statement ps=conn.createStatement(); ps.addBatch("trunca ...

  10. MySQL存储引擎 -- MyISAM(表锁定) 与 InnoDB(行锁定) 锁定机制

    前言 为了保证数据的一致完整性,任何一个数据库都存在锁定机制.锁定机制的优劣直接应想到一个数据库系统的并发处理能力和性能,所以锁定机制的实现也就成为了各种数据库的核心技术之一.本章将对MySQL中两种 ...