模板 可并堆【洛谷P3377】 【模板】左偏树(可并堆)
P3377 【模板】左偏树(可并堆)
如题,一开始有N个小根堆,每个堆包含且仅包含一个数。接下来需要支持两种操作:
操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删除或第x和第y个数在用一个堆内,则无视此操作)
操作2: 2 x 输出第x个数所在的堆最小数,并将其删除(若第x个数已经被删除,则输出-1并无视删除操作)
code:
// luogu-judger-enable-o2
#include <iostream>
#include <cstdio>
using namespace std;
const int wx=200017;
inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0'; ch=getchar();}
return sum*f;
}
int n,m;
int val[wx],f[wx],dis[wx];
int ch[wx][3];
int merge(int x,int y){
if(x==0||y==0) return x+y;
if((val[x]>val[y])||(val[x]==val[y]&&x>y))swap(x,y);
ch[x][1]=merge(ch[x][1],y); f[ch[x][1]]=x;
if(dis[ch[x][1]]>dis[ch[x][0]])swap(ch[x][1],ch[x][0]);
dis[x]=dis[ch[x][1]]+1; return x;
}
int getf(int x){
while(f[x])x=f[x];
return x;
}
void pop(int x){
val[x]=-1;
f[ch[x][1]]=f[ch[x][0]]=0;
merge(ch[x][0],ch[x][1]);
}
int main(){
n=read(); m=read();
for(int i=1;i<=n;i++) val[i]=read();
for(int i=1;i<=m;i++){
int opt; opt=read();
if(opt==1){
int x,y; x=read(); y=read();
if(x==y||val[x]==-1||val[y]==-1)continue;
int fx=getf(x); int fy=getf(y);
merge(fx,fy);
}
else{
int x; x=read();
if(val[x]==-1)puts("-1");
else{
int fx=getf(x);
printf("%d\n",val[fx]); pop(fx);
}
}
}
}
模板 可并堆【洛谷P3377】 【模板】左偏树(可并堆)的更多相关文章
- 洛谷 - P1552 - 派遣 - 左偏树 - 并查集
首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...
- [note]左偏树(可并堆)
左偏树(可并堆)https://www.luogu.org/problemnew/show/P3377 题目描述 一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 ...
- Monkey King(左偏树 可并堆)
我们知道如果要我们给一个序列排序,按照某种大小顺序关系,我们很容易想到优先队列,的确很方便,但是优先队列也有解决不了的问题,当题目要求你把两个优先队列合并的时候,这就实现不了了 优先队列只有插入 删除 ...
- bzoj2809 [Apio2012]dispatching——左偏树(可并堆)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...
- 洛谷 P3377 模板左偏树
题目:https://www.luogu.org/problemnew/show/P3377 左偏树的模板题: 加深了我对空 merge 的理解: 结构体的编号就是原序列的位置. 代码如下: #inc ...
- [luogu3377][左偏树(可并堆)]
题目链接 思路 左偏树的模板题,参考左偏树学习笔记 对于这道题我是用一个并查集维护出了哪些点是在同一棵树上,也可以直接log的往上跳寻找根节点 代码 #include<cstdio> #i ...
- HDU3031 To Be Or Not To Be 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU3031 题意概括 喜羊羊和灰太狼要比赛. 有R次比赛. 对于每次比赛,首先输入n,m,n表示喜羊羊和灰 ...
- HDU5818 Joint Stacks 左偏树,可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU5818 题意概括 有两个栈,有3种操作. 第一种是往其中一个栈加入一个数: 第二种是取出其中一个栈的顶 ...
- BZOJ 4003: [JLOI2015]城池攻占 左偏树 可并堆
https://www.lydsy.com/JudgeOnline/problem.php?id=4003 感觉就是……普通的堆啊(暴论),因为这个堆是通过递归往右堆里加一个新堆或者新节点的,所以要始 ...
- BZOJ 5494: [2019省队联测]春节十二响 (左偏树 可并堆)
题意 略 分析 稍微yy一下可以感觉就是一个不同子树合并堆,然后考场上写了一发左偏树,以为100分美滋滋.然而发现自己傻逼了,两个堆一一对应合并后剩下的一坨直接一次合并进去就行了.然鹅我这个sb把所有 ...
随机推荐
- AngularJS入门之如何快速上手
概述: AngularJS(ng)是一个纯JS框架,AngularJS易于构建CRUD应用(CRUD意思是增删改查) 适用于以数据操作为主的SPA(Single Page Application) ...
- ffmpeg: ‘UINT64_C’ was not declared in this scope (转)
ffmpeg 默认是用C文件来编译的,如果某个CPP文件想引用ffmpeg中的某些函数或者头文件,有可能出现 ‘UINT64_C’ was not declared in this scope的错误 ...
- jdbc.properties 文件的配置
jdbc.properties文件的配置 使用配置文件访问数据库的优点是: 一次编写随时调用,数据库类型发生变化只需要修改配置文件. 配置文件的设置: 在配置文件中,key-value对应的方式编 ...
- 嵌入式Linux启动优化手记2 U…
参考一下 原文地址:U-boot优化">嵌入式Linux启动优化手记2 U-boot优化作者:ZhaoJunling 既然不能使用新的U-boot,那就优化一点是一点,慢慢干吧. 1. ...
- Android ScrollView 内部控件 layout_margin失效的解决方法
在<ScrollView> 的<LinearLayout >属性里面加入android:layout_gravity="top" <LinearLa ...
- valgrind详解
调不尽的内存泄漏,用不完的Valgrind Valgrind 安装 1.valgrind 安装包下载地址:http://valgrind.org/downloads/repository.html(使 ...
- NULL、0、nullptr
C的NULL 在C语言中,我们使用NULL表示空指针,也就是我们可以写如下代码: int *i = NULL;foo_t *f = NULL; 实际上在C语言中,NULL通常被定义为如下: #defi ...
- 获取当前设备的CPU个数
public class Test { public static void main(String[] args) { //获取当前设备的CPU个数 int availableProcessors ...
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-002插入排序法(Insertion sort)
一.介绍 1.时间和空间复杂度 运行过程 2.特点: (1)对于已排序或接近排好的数据,速度很快 (2)对于部分排好序的输入,速度快 二.代码 package algorithms.elementar ...
- WDCP文件缓存问题
WDCP文件缓存问题,新建index.php 输入代码 <?php echo '789'; ?> 显示789 修改代码 <?php echo '666'; ?> 显示789 访 ...