题面

传送门

题解

嗯……还是懒得写了……这里

//minamoto
#include<bits/stdc++.h>
#define R register
#define IT map<int,int>::iterator
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=1e6+5,P=1e9+7,inv2=500000004;
bitset<N>vis;int p[N],mu[N],f[N],g[N],m,sqr,n;map<int,int>mp;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
inline int calc(R int x){return (1ll*x*(x+1)>>1)%P;}
void init(int n){
f[1]=1;
fp(i,2,n){
if(!vis[i])p[++m]=i,mu[i]=P-1;
for(R int j=1;j<=m&&1ll*i*p[j]<=n;++j){
vis[i*p[j]]=1;
if(i%p[j]==0)break;
mu[i*p[j]]=P-mu[i];
}
}
fp(i,2,n)f[i]=add(f[i-1],mul(mu[i],i));
fp(i,1,n)for(R int j=i;j<=n;j+=i)g[j]=add(g[j],i);
fp(i,2,n)g[i]=add(g[i-1],g[i]);
}
int F(int n){
if(n<=sqr)return f[n];
IT it=mp.find(n);
if(it!=mp.end())return it->second;
int res=1,las=1,now;
for(int i=2,j;i<=n;i=j+1)
j=n/(n/i),now=calc(j),res=dec(res,mul(now-las+P,F(n/i))),las=now;
return mp[n]=res;
}
int G(int n){
if(n<=sqr)return g[n];
int res=0,las=0,now;
for(R int i=1,j;i<=n;i=j+1)
j=n/(n/i),now=calc(j),res=add(res,mul(now-las+P,n/i)),las=now;
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n),init(sqr=N-5);
int res=0,las=0,now,x;
for(R int i=1,j;i<=n;i=j+1)
j=n/(n/i),now=F(j),x=G(n/i),res=add(res,mul(now-las+P,mul(x,x))),las=now;
printf("%d\n",res);
return 0;
}

[51nod1220] 约数之和(杜教筛+莫比乌斯反演)的更多相关文章

  1. [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)

    题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...

  2. BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演

    BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...

  3. 51NOD 1220 约数之和 [杜教筛]

    1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)​\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...

  4. 【XSY2731】Div 数论 杜教筛 莫比乌斯反演

    题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部 ...

  5. [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]

    题面: 传送门 思路: 首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$ 这道题的最特殊的点 ...

  6. [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)

    题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑N​j=1∑N​d(ij) ...

  7. [51Nod 1220] - 约数之和 (杜教筛)

    题面 令d(n)d(n)d(n)表示nnn的约数之和求 ∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑n​j=1∑n​d(ij) 题目分析 ...

  8. bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)

    题目大意: 读入n. 第一行输出“1”(不带引号). 第二行输出$\sum_{i=1}^n i\phi(i)$. 题解: 所以说那个$\sum\mu$是在开玩笑么=.= 设$f(n)=n\phi(n) ...

  9. 51 NOD 1244 莫比乌斯函数之和(杜教筛)

    1244 莫比乌斯函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens) ...

随机推荐

  1. SQLite连接C#笔记

    不得不吐槽,实在是太坑了.以下几点一定要注意: 要下载两个东西,都要上官网.一个是SQLite for Windows,一个是System.Data.SQLite. 下载下来的DLL里面有个test, ...

  2. Zookeeper学习(八):Zookeeper的数据发布与订阅模式

     http://blog.csdn.net/ZuoAnYinXiang/article/category/6104448 1.发布订阅的基本概念        1.发布订阅模式可以看成一对多的关系:多 ...

  3. eclipse中删除tomcat server 导致不能重新创建该server

    定位到:workspace\.metadata\.plugins\org.eclipse.core.runtime\.settings 1 打开org.eclipse.jst.server.tomca ...

  4. 修改rbd指定位置的数据

    标签(空格分隔): ceph,ceph实验 --- 我们通过查看index为0x01的小4M文件,得知了file2.txt这个文件内容在这个4M内保存的位置为0x9000,因为0x01前面还有一个4M ...

  5. python第十一天-----补:缓存操作

    memcached,首先下载python-memcached模块,在cmd中执行pip install python-memcached即可 memcached比较简单,默认情况仅支持简单的kv存储, ...

  6. 三种web性能压力测试工具

    三种web性能压力测试工具http_load webbench ab小结 题记:压力和性能测试工具很多,下文讨论的是我觉得比较容易上手,用的比较多的三种 http_load 下载地址:http://w ...

  7. C Primer Plus学习笔记(六)- C 控制语句:分支和跳转

    if 语句: if 语句被称为分支语句(branching statement)或选择语句(selection statement) if 语句的通用形式: if (expression) state ...

  8. 执行: python manage.py makemigrations报AttributeError: 'str' object has no attribute 'decode'

    找到错误代码(line146):query = query.encode(errors='replace') 解决方法:把decode改为encode即可.

  9. 运动事件Motion Events

    备注:运动事件,也是加速度时间,一般像摇晃手机就属于运动事件           监听运动事件对于UI控件有个前提就是监听对象必须是第一响应者(对于UIViewController视图控制器和UIAP ...

  10. 【总结整理】WebGIS基础

    1.万维网:www是world wide web的简称是在超文本基础上形成的信息网 2.互联网:即广域局域网及单机按照一定的通讯协议组成的国际计算机网络 3.WebGIS:网络地理信息系统,指基于In ...