[51nod1220] 约数之和(杜教筛+莫比乌斯反演)
题面
题解
嗯……还是懒得写了……这里
//minamoto
#include<bits/stdc++.h>
#define R register
#define IT map<int,int>::iterator
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=1e6+5,P=1e9+7,inv2=500000004;
bitset<N>vis;int p[N],mu[N],f[N],g[N],m,sqr,n;map<int,int>mp;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
inline int calc(R int x){return (1ll*x*(x+1)>>1)%P;}
void init(int n){
f[1]=1;
fp(i,2,n){
if(!vis[i])p[++m]=i,mu[i]=P-1;
for(R int j=1;j<=m&&1ll*i*p[j]<=n;++j){
vis[i*p[j]]=1;
if(i%p[j]==0)break;
mu[i*p[j]]=P-mu[i];
}
}
fp(i,2,n)f[i]=add(f[i-1],mul(mu[i],i));
fp(i,1,n)for(R int j=i;j<=n;j+=i)g[j]=add(g[j],i);
fp(i,2,n)g[i]=add(g[i-1],g[i]);
}
int F(int n){
if(n<=sqr)return f[n];
IT it=mp.find(n);
if(it!=mp.end())return it->second;
int res=1,las=1,now;
for(int i=2,j;i<=n;i=j+1)
j=n/(n/i),now=calc(j),res=dec(res,mul(now-las+P,F(n/i))),las=now;
return mp[n]=res;
}
int G(int n){
if(n<=sqr)return g[n];
int res=0,las=0,now;
for(R int i=1,j;i<=n;i=j+1)
j=n/(n/i),now=calc(j),res=add(res,mul(now-las+P,n/i)),las=now;
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n),init(sqr=N-5);
int res=0,las=0,now,x;
for(R int i=1,j;i<=n;i=j+1)
j=n/(n/i),now=F(j),x=G(n/i),res=add(res,mul(now-las+P,mul(x,x))),las=now;
printf("%d\n",res);
return 0;
}
[51nod1220] 约数之和(杜教筛+莫比乌斯反演)的更多相关文章
- [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)
题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...
- BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演
BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...
- 51NOD 1220 约数之和 [杜教筛]
1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mi ...
- 【XSY2731】Div 数论 杜教筛 莫比乌斯反演
题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部 ...
- [CQOI2015][bzoj3930] 选数 [杜教筛+莫比乌斯反演]
题面: 传送门 思路: 首先我们把区间缩小到$\left[\lfloor\frac{L-1}{K}\rfloor,\lfloor\frac{R}{K}\rfloor\right]$ 这道题的最特殊的点 ...
- [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)
题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑Nj=1∑Nd(ij) ...
- [51Nod 1220] - 约数之和 (杜教筛)
题面 令d(n)d(n)d(n)表示nnn的约数之和求 ∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑nj=1∑nd(ij) 题目分析 ...
- bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)
题目大意: 读入n. 第一行输出“1”(不带引号). 第二行输出$\sum_{i=1}^n i\phi(i)$. 题解: 所以说那个$\sum\mu$是在开玩笑么=.= 设$f(n)=n\phi(n) ...
- 51 NOD 1244 莫比乌斯函数之和(杜教筛)
1244 莫比乌斯函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens) ...
随机推荐
- 几种排序方式的java实现(02:希尔排序,归并排序,堆排序)
代码(部分为别人代码): 1.希尔排序(ShellSort) /* * 希尔排序:先取一个小于n的整数d1作为第一个增量, * 把文件的全部记录分成(n除以d1)个组.所有距离为d1的倍数的记录放在同 ...
- java代码流类。。程序怎么跟书上的结果不一样???
总结:这个程序很容易懂.的那是这个结果我觉得有问题啊..怎么“stop”后,输出的内容是输入过的呢? 应该是没有关系的呀,与输入的值是不同的....怎么书上运行的结果和我的不一样啊 package c ...
- HAproxy+Mycat
haproxy+mycat搭建haproxy server 10.0.1.134mycat server 10.0.1.134,10.0.1.135mysql master 10.0.1.134mys ...
- RVO和NRVO
返回值优化(Return Value Optimization,简称RVO),是这么一种优化机制:当函数需要返回一个对象的时候,如果自己创建一个临时对象用户返回,那么这个临时对象会消耗一个构造函数(C ...
- VMware:Configuration file was created by a VMware product with more features than this version
Few days ago,I opened the Genesys demo VM by VMware Server 1.0.4 and got an error like this: "C ...
- 正则表达式计算 origin = "1 - 2 * ( ( 60 - 30 + ( -40.0 / 5 ) * ( 9 - 2 * 5 / 3 + 7 / 3 * 99 / 4 * 2998 + 10 * 568 / 14 )) - ( - 4 * 3 ) / ( 16 - 3 * 2))"
#!/usr/bin/env python import re def f1(arg): return 1 origin = "1 - 2 * ( ( 60 - 30 + ( -40.0 / ...
- dos 下bat 常用符号
1.@一般在它之后紧跟一条命令或一条语句,则此命令或语句本身在执行的时候不会显示在屏幕上.请把下面的代码保存为test.cmd文件,然后运行,比较一下两条echo语句在屏幕上的输出差异: ech ...
- Linux_oracle命令大全(转)
Linux_oracle命令大全 一,启动 1.#su - oracle 切换到oracle用户且切换到它的环境 2.$lsnrctl status 查看 ...
- Ajax笔记(二)
JSON基本概念: JSON:javaScript对象表示法(JavaScript Object Notation) JSON是存储和交换文本信息的语法,类似XML.它采用键值对的方式来组织,易于人们 ...
- CSS代码重构与优化之路(转)
CSS代码重构与优化之路 阅读目录 CSS代码重构的目的 CSS代码重构的基本方法 CSS方法论 我自己总结的方法 写CSS的同学们往往会体会到,随着项目规模的增加,项目中的CSS代码也会越来越多 ...