luogu3380 树套树之线段树套线段树
个人感觉可能是最不需要脑子写的方法
不过也不太好调
就是用一个普通的线段树维护这个序列,但是对于线段树的每一个区间,再开一个动态开点的权值线段树,里面存储这个区间所有元素值
单点修改只会涉及到log棵权值线段树的单点修改(不用打lazy太棒了 log^2
查询区间内x的排名相当于查询区间内<x的数的个数+1,我们把区间分成log个外层线段树上的区间,然后在每个权值线段树上统计即可,复杂度log^2
查询排名为x的数比较麻烦,我们直接二分,复杂度log^3
查询前驱后继:由于线段树维护的区间,总区间是把这log个区间相加,所以我们再每个权值线段树查询下前驱后继再合并就行,前驱取max,后继取min
至于怎么查询,可以在线段树上二分
代码写的特别乱...
#include <cstdio>
#include <functional>
using namespace std;
int l[17000010], r[17000010], tree[17000010], tot;
int rt[200010], init[50010], fuck = 100000000;
int s[10000010], top;
int n, m;
void chenge(int &x, int cl, int cr, int pos, int val)
{
if (x == 0)
{
if (top > 0) x = s[top--];
else x = ++tot;
}
if (tot % 100000 == 0) fprintf(stderr, "(%d, %d)\n", tot, top);
if (cl == cr) {tree[x] += val; if (tree[x] == 0) s[++top] = x, x = 0; return; }
int mid = (cl + cr) / 2;
if (pos > mid) chenge(r[x], mid + 1, cr, pos, val);
else chenge(l[x], cl, mid, pos, val);
tree[x] = tree[l[x]] + tree[r[x]];
if (l[x] == 0 && r[x] == 0) { s[++top] = x, x = 0; }
}
int query(int x, int cl, int cr, int pos)
{
if (x == 0 || cl == cr) return 0;
int mid = (cl + cr) / 2;
if (pos > mid)
return tree[l[x]] + query(r[x], mid + 1, cr, pos);
else return query(l[x], cl, mid, pos);
}
int qrange(int x, int cl, int cr, int L, int R)
{
if (x == 0) return 0;
if (R < cl || cr < L) return 0;
if (L <= cl && cr <= R) return tree[x];
int mid = (cl + cr) / 2;
return qrange(l[x], cl, mid, L, R) + qrange(r[x], mid + 1, cr, L, R);
}
int getnumber(int x, int cl, int cr, int rank)
{
if (cl == cr) { return cl; }
int mid = (cl + cr) / 2;
if (rank <= tree[l[x]]) return getnumber(l[x], cl, mid, rank);
else return getnumber(r[x], mid + 1, cr, rank - tree[l[x]]);
}
int getnumber2(int x, int cl, int cr, int rank)
{
if (cl == cr) { return cl; }
int mid = (cl + cr) / 2;
if (rank <= tree[r[x]]) return getnumber2(r[x], mid + 1, cr, rank);
else return getnumber2(l[x], cl, mid, rank - tree[r[x]]);
}
int getprev(int rt, int pos)
{
int tot = qrange(rt, 0, fuck, 0, pos - 1); // [1, pos - 1]内数的个数
if (tot == 0) return -2147483647;
return getnumber(rt, 0, fuck, tot);
}
int getnext(int rt, int pos)
{
int tot = qrange(rt, 0, fuck, pos + 1, fuck);
if (tot == 0) return 2147483647;
return getnumber2(rt, 0, fuck, tot);
}
//---- 外面线段树
void build(int x, int l, int r)
{
for (int i = l; i <= r; i++)
chenge(rt[x], 0, fuck, init[i], 1);
if (l == r) return;
int mid = (l + r) / 2;
build(x * 2, l, mid);
build(x * 2 + 1, mid + 1, r);
}
int qrank(int x, int cl, int cr, int L, int R, int k)
{
if (R < cl || cr < L) return 0;
if (L <= cl && cr <= R) return query(rt[x], 0, fuck, k);
int mid = (cl + cr) / 2;
return qrank(x * 2, cl, mid, L, R, k) + qrank(x * 2 + 1, mid + 1, cr, L, R, k);
}
void change(int x, int cl, int cr, int pos, int val)
{
chenge(rt[x], 0, fuck, init[pos], -1);
chenge(rt[x], 0, fuck, val, 1);
if (cl == cr) return;
int mid = (cl + cr) / 2;
if (pos > mid) change(x * 2 + 1, mid + 1, cr, pos, val);
else change(x * 2, cl, mid, pos, val);
}
int qprev(int x, int cl, int cr, int L, int R, int k)
{
if (R < cl || cr < L) return -2147483647;
if (L <= cl && cr <= R)
{
int res = getprev(rt[x], k);
return res;
}
int mid = (cl + cr) / 2;
return max(qprev(x * 2, cl, mid, L, R, k), qprev(x * 2 + 1, mid + 1, cr, L, R, k));
}
int qnext(int x, int cl, int cr, int L, int R, int k)
{
if (R < cl || cr < L) return 2147483647;
if (L <= cl && cr <= R) return getnext(rt[x], k);
int mid = (cl + cr) / 2;
return min(qnext(x * 2, cl, mid, L, R, k), qnext(x * 2 + 1, mid + 1, cr, L, R, k));
}
int main()
{
// printf("%f\n", (3 * sizeof(l) + sizeof(s) + sizeof(rt)) / 1000000.);
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
scanf("%d", &init[i]);
build(1, 1, n);
for (int opd, l, r, k, i = 1; i <= m; i++)
{
scanf("%d%d%d", &opd, &l, &r);
if (opd != 3) scanf("%d", &k);
if (opd == 1)
{
printf("%d\n", qrank(1, 1, n, l, r, k) + 1);
}
if (opd == 2) // query值<k的最大一撮数中最小的一个
{
// for (int i = 0; i <= 10; i++) printf("query(%d) = %d\n", i, qrank(1, 1, n, l, r, i));
int cl = 0, cr = 100000000;
while (cl < cr)
{
int mid = (cl + cr + 1) / 2;
if (qrank(1, 1, n, l, r, mid) < k) cl = mid;
else cr = mid - 1;
}
// int ans = qrank(1, 1, n, l, r, cl);
// cl = 0, cr = 100000000;
// while (cl < cr)
// {
// int mid = (cl + cr) / 2;
// if (qrank(1, 1, n, l, r, mid) >= ans) cr = mid;
// else cl = mid + 1;
// }
printf("%d\n", cl);
}
if (opd == 3)
{
change(1, 1, n, l, r);
init[l] = r;
}
if (opd == 4)
{
printf("%d\n", qprev(1, 1, n, l, r, k));
}
if (opd == 5)
{
printf("%d\n", qnext(1, 1, n, l, r, k));
}
}
return 0;
}
luogu3380 树套树之线段树套线段树的更多相关文章
- 「luogu3380」【模板】二逼平衡树(树套树)
「luogu3380」[模板]二逼平衡树(树套树) 传送门 我写的树套树--线段树套平衡树. 线段树上的每一个节点都是一棵 \(\text{FHQ Treap}\) ,然后我们就可以根据平衡树的基本操 ...
- 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题
“队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄> 线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...
- 树剖+线段树||树链剖分||BZOJ1984||Luogu4315||月下“毛景树”
题面:月下“毛景树” 题解:是道很裸的树剖,但处理的细节有点多(其实是自己线段树没学好).用一个Dfs把边权下移到点权,用E数组记录哪些边被用到了:前三个更新的操作都可以合并起来,可以发现a到b节点间 ...
- 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)
Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...
- BZOJ4881 线段游戏(二分图+树状数组/动态规划+线段树)
相当于将线段划分成两个集合使集合内线段不相交,并且可以发现线段相交等价于逆序对.也即要将原序列划分成两个单增序列.由dilworth定理,如果存在长度>=3的单减子序列,无解,可以先判掉. 这个 ...
- 【BZOJ4817】树点涂色(LCT,线段树,树链剖分)
[BZOJ4817]树点涂色(LCT,线段树,树链剖分) 题面 BZOJ Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义 ...
- [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)
[51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...
- 「雅礼集训 2017 Day2」线段游戏(线段树懒标记“启发式下传”,李超树)
题面 题解 加入一条线段,可以把它转化为在[L,R]区间内加一条线 y=ax+b (如果原线段与y轴平行,就相当于在{x1}处加一条线 y=max(y1,y2)) 我们可以把它加到线段树上,线段树上每 ...
- 树链剖分 - Luogu 3384【模板】树链剖分
[模板]树链剖分 题目描述 已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操 ...
- 数据结构--树(遍历,红黑,B树)
平时接触树还比较少,写一篇博文来积累一下树的相关知识. 很早之前在数据结构里面学的树的遍历. 前序遍历:根节点->左子树->右子树 中序遍历:左子树->根节点->右子树 后序遍 ...
随机推荐
- mjpg-streamer移植
本文的copyright归yuweixian4230@163.com 所有,使用GPL发布,可以自由拷贝,转载.但转载请保持文档的完整性,注明原作者及原链接,严禁用于任何商业用途. 作者:yuweix ...
- Python函数(一)-return返回值
定义一个函数可以在最后加上return返回值,方便查看函数是否运行完成和返回函数的值 # -*- coding:utf-8 -*- __author__ = "MuT6 Sch01aR&qu ...
- Struts1使用技巧
转自:https://blog.csdn.net/chjttony/article/details/6099101 1.Struts1是Apache推出的java web开发领域一个比较早,同时也是使 ...
- C语言学习笔记--指针概念
指针也是一种变量,占有内存空间,用来保存内存地址,在32位系统中指针的占用的内存大小为4个字节 1.*号的意义 (1)在指针声明时,*号表示所声明的变量为指针 (2)在指针使用时,*号表示取指针所指向 ...
- 定位程序问题出现的原因工具-jstack
jstack还可以生成线程快照 如何使用jstack: 1.打开命令行,输入jstack 在任务管理器中就可看到对应进程id 2.在命令行中输入 jstack -l 进程id 这样就可得到进程中所有的 ...
- 每天一道算法题(14)——N个降序数组,找到最大的K个数
题目: 假定有20个有序数组,每个数组有500个数字,降序排列,数字类型32位uint数值,现在需要取出这10000个数字中最大的500个. 思路 (1).建立大顶堆,维度为数组的个数,这里为20( ...
- Android屏幕适配终结者
1,http://blog.csdn.net/zhengjingle/article/details/51742839 github : https://github.com/zhengjingle/ ...
- spring----AOP注解以及spring的JDBC和事务
技术分析之:Spring框架的AOP技术(注解方式) 1. 步骤一:创建JavaWEB项目,引入具体的开发的jar包 * 先引入Spring框架开发的基本开发包 * 再引入Spring框架的AOP的开 ...
- 关于A类,B类,C类IP地址的网段和主机数的计算方法
关于A类,B类,C类IP地址的网段和主机数的计算方法 IP地址是一个32位的二进制数,由四个八位字段组成.每个IP地址包括两部分:一部分为网络标识(网络号),一部分为主机标识(主机号). A类地址前8 ...
- opencv3更换图片背景
#include <opencv2/opencv.hpp>#include <iostream> using namespace std;using namespace cv; ...