洛谷P3413 SAC#1 - 萌数(数位dp)
题目描述
辣鸡蒟蒻SOL是一个傻逼,他居然觉得数很萌!
好在在他眼里,并不是所有数都是萌的。只有满足“存在长度至少为2的回文子串”的数是萌的——也就是说,101是萌的,因为101本身就是一个回文数;110是萌的,因为包含回文子串11;但是102不是萌的,1201也不是萌的。
现在SOL想知道从l到r的所有整数中有多少个萌数。
由于答案可能很大,所以只需要输出答案对1000000007(10^9+7)的余数。
输入输出格式
输入格式:
输入包含仅1行,包含两个整数:l、r。
输出格式:
输出仅1行,包含一个整数,即为答案。
输入输出样例
说明
记n为r在10进制下的位数。
对于10%的数据,n <= 3。
对于30%的数据,n <= 6。
对于60%的数据,n <= 9。
对于全部的数据,n <= 1000,l < r。
题解
我数位dp门都没入呢……
别指望我能讲啥,自己看代码理解吧……
只要注意一下下面代码里的$Pre$和$per$,一个表示前一个数,一个表示前两个数,因为回文数只会有$aba$和$aa$两种类型,然后只要注意特判一下当前位置是$1$的就行了
//minamoto
#include<iostream>
#include<cstring>
#include<cstdio>
#define ll long long
using namespace std;
const int N=,mod=1e9+;
char s1[N],s2[N];ll dp[N][N][];int a[N];
ll dfs(int pos,int Pre,int per,int t,int k,int flag){
if(pos<=) return t;
if(!flag&&~dp[pos][Pre][t]) return dp[pos][Pre][t];
int end=flag?a[pos]:;ll res=;
for(int i=;i<=end;++i)
(res+=dfs(pos-,i,k?Pre:-,t||(i==Pre&&k)||(i==per&&k),k||i,flag&&(i==end)))%=mod;
if(!flag&&k&&~per) dp[pos][Pre][t]=res;
return res;
}
int solve(char *s){
int len=,slen=strlen(s+);
while(slen) a[++len]=s[slen--]-'';
memset(dp,-,sizeof(dp));
return dfs(len,-,-,,,);
}
int main(){
scanf("%s%s",s1+,s2+);
int len=strlen(s1+);
if(s1[len]!=) s1[len]-=;
else s1[len-]-=,s1[len]='';
printf("%d\n",(solve(s2)-solve(s1)+mod)%mod);
return ;
}
洛谷P3413 SAC#1 - 萌数(数位dp)的更多相关文章
- 洛谷P3413 SAC#1 - 萌数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P3413 题目大意: 定义萌数指:满足"存在长度至少为2的回文子串"的数. 求区间 \([L,R]\) ...
- [洛谷P3413]SAC#1 - 萌数
题目大意:求$[l,r](0\leqslant l<r< 10^{1001})$中存在长度至少为$2$的回文串的数字数 题解:数位$DP$,发现如果有回文串,若长度为偶数,一定有两个相同的 ...
- 洛谷 P3413 SAC#1 - 萌数
题意简述 求l~r之间存在长度至少为2的回文子串的正整数的个数 题解思路 数位DP 注意到有偶数长度的回文串必有长度为2的回文串,有奇数长度的回文串必有长度为3的回文串 所以只需判断与前一位,前两位是 ...
- LUOGU P3413 SAC#1 - 萌数(数位dp)
传送门 解题思路 首先这道题如果有两个以上长度的回文串,那么就一定有三个或两个的回文串,所以只需要记录一下上一位和上上位填的数字就行了.数位\(dp\),用记忆化搜索来实现.设\(f[i][j][k] ...
- P3413 SAC#1 - 萌数
题目 洛谷 数位动规用爆搜真好玩 做法 含有回文串实际我们仅需判断是否有\(2/3\)回文串 \(Dfs(now,num,pre,ly,lead,prel,top)\): 在第\(now\)位 \(n ...
- 洛谷CF809C Find a car(数位DP)
洛谷题目传送门 通过瞪眼法发现,\(a_{i,j}=(i-1)\text{ xor }(j-1)+1\). 二维差分一下,我们只要能求\(\sum\limits_{i=0}^x\sum\limits_ ...
- 洛谷P2606 [ZJOI2010]排列计数(数位dp)
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷$P$2235 $Kathy$函数 $[HNOI2002]$ 数位$dp$
正解:数位$dp$ 解题报告: 传送门$qwq$ $HNOI$的题从02年就这么神了嘛$QAQ$,,, 嗷对了这题如果看出了一个结论就是个数位$dp$板子,,,?但是结论很神我$jio$得挺难看出来的 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
随机推荐
- MySQL 5.6 date 与 string 的转换和比较
我们有张表,表中有一个字段 dpt_date ,SQL 类型为 date,表示离开日期. 我们将 dpt_date 与字符串 ‘2016-03-09’ 进行比较,发现效率低于 dpt_date 转换为 ...
- Spring Boot整合Rabbitmq
Spring Boot应用中整合RabbitMQ,并实现一个简单的发送.接收消息的例子来对RabbitMQ有一个直观的感受和理解. 在Spring Boot中整合RabbitMQ是一件非常容易的事,因 ...
- Git学习笔记(一)Git初识及基本操作
详细完整教程:官方文档,廖神Git教程,武sir 一.什么是Git? 定义:Git是分布式版本控制系统. 1.1什么是版本控制 我们可以回想以下,在我们上学毕业要写论文或是准备一份演讲稿的时候,都会用 ...
- 实验吧CTF题库-安全杂项
XDCTF misc200: 题目提示: 下载文件 用foremost分离文件 接下来用archpr 4.53进行明文攻击 先把00002700.zip中的readme.txt提取出来压缩成zip文件 ...
- Recovery of DISKGROUP in VXVM (ZT)
http://gurkulindia.com/main/2012/03/recovery-of-diskgroup-in-vxvm-veritas-volume-manager/# Since lon ...
- css垂直居中方法(二)
第四种方法: 这个方法把一些div的显示方式设置为表格,因此我们可以使用表格的vartial-align属性. 代码如下: <!doctype html> <html lang=&q ...
- PL/SQL批处理语句(一)BULK COLLECT
我们知道PL/SQL程序中运行SQL语句是存在开销的,因为SQL语句是要提交给SQL引擎处理,这种在PL/SQL引擎和SQL引擎之间的控制转移叫做上下文却换,每次却换时,都有额外的开销.然而,FORA ...
- js原型及原型链
一. 普通对象与函数对象 JavaScript 中,万物皆对象!但对象也是有区别的.分为普通对象和函数对象,Object ,Function 是JS自带的函数对象.下面举例说明 function f ...
- Android getWidth和getMeasuredWidth的区别
getWidth 得到的事某个View的实际尺寸. getMeasuredWidth 得到的是某个View想要在parent view里面占的大小 相比你也见过这样的解释,听起来这样的解释也是云里雾里 ...
- day69-oracle 22-DBCA
只涉及到数据库的管理,不涉及到数据库的开发.不涉及到写SQL程序或者是写增删改查,不涉及到这些东西,也不涉及到事务. 你在安装oracle的时候它自动帮你创建一个数据库.