洛谷P3413 SAC#1 - 萌数(数位dp)
题目描述
辣鸡蒟蒻SOL是一个傻逼,他居然觉得数很萌!
好在在他眼里,并不是所有数都是萌的。只有满足“存在长度至少为2的回文子串”的数是萌的——也就是说,101是萌的,因为101本身就是一个回文数;110是萌的,因为包含回文子串11;但是102不是萌的,1201也不是萌的。
现在SOL想知道从l到r的所有整数中有多少个萌数。
由于答案可能很大,所以只需要输出答案对1000000007(10^9+7)的余数。
输入输出格式
输入格式:
输入包含仅1行,包含两个整数:l、r。
输出格式:
输出仅1行,包含一个整数,即为答案。
输入输出样例
说明
记n为r在10进制下的位数。
对于10%的数据,n <= 3。
对于30%的数据,n <= 6。
对于60%的数据,n <= 9。
对于全部的数据,n <= 1000,l < r。
题解
我数位dp门都没入呢……
别指望我能讲啥,自己看代码理解吧……
只要注意一下下面代码里的$Pre$和$per$,一个表示前一个数,一个表示前两个数,因为回文数只会有$aba$和$aa$两种类型,然后只要注意特判一下当前位置是$1$的就行了
- //minamoto
- #include<iostream>
- #include<cstring>
- #include<cstdio>
- #define ll long long
- using namespace std;
- const int N=,mod=1e9+;
- char s1[N],s2[N];ll dp[N][N][];int a[N];
- ll dfs(int pos,int Pre,int per,int t,int k,int flag){
- if(pos<=) return t;
- if(!flag&&~dp[pos][Pre][t]) return dp[pos][Pre][t];
- int end=flag?a[pos]:;ll res=;
- for(int i=;i<=end;++i)
- (res+=dfs(pos-,i,k?Pre:-,t||(i==Pre&&k)||(i==per&&k),k||i,flag&&(i==end)))%=mod;
- if(!flag&&k&&~per) dp[pos][Pre][t]=res;
- return res;
- }
- int solve(char *s){
- int len=,slen=strlen(s+);
- while(slen) a[++len]=s[slen--]-'';
- memset(dp,-,sizeof(dp));
- return dfs(len,-,-,,,);
- }
- int main(){
- scanf("%s%s",s1+,s2+);
- int len=strlen(s1+);
- if(s1[len]!=) s1[len]-=;
- else s1[len-]-=,s1[len]='';
- printf("%d\n",(solve(s2)-solve(s1)+mod)%mod);
- return ;
- }
洛谷P3413 SAC#1 - 萌数(数位dp)的更多相关文章
- 洛谷P3413 SAC#1 - 萌数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P3413 题目大意: 定义萌数指:满足"存在长度至少为2的回文子串"的数. 求区间 \([L,R]\) ...
- [洛谷P3413]SAC#1 - 萌数
题目大意:求$[l,r](0\leqslant l<r< 10^{1001})$中存在长度至少为$2$的回文串的数字数 题解:数位$DP$,发现如果有回文串,若长度为偶数,一定有两个相同的 ...
- 洛谷 P3413 SAC#1 - 萌数
题意简述 求l~r之间存在长度至少为2的回文子串的正整数的个数 题解思路 数位DP 注意到有偶数长度的回文串必有长度为2的回文串,有奇数长度的回文串必有长度为3的回文串 所以只需判断与前一位,前两位是 ...
- LUOGU P3413 SAC#1 - 萌数(数位dp)
传送门 解题思路 首先这道题如果有两个以上长度的回文串,那么就一定有三个或两个的回文串,所以只需要记录一下上一位和上上位填的数字就行了.数位\(dp\),用记忆化搜索来实现.设\(f[i][j][k] ...
- P3413 SAC#1 - 萌数
题目 洛谷 数位动规用爆搜真好玩 做法 含有回文串实际我们仅需判断是否有\(2/3\)回文串 \(Dfs(now,num,pre,ly,lead,prel,top)\): 在第\(now\)位 \(n ...
- 洛谷CF809C Find a car(数位DP)
洛谷题目传送门 通过瞪眼法发现,\(a_{i,j}=(i-1)\text{ xor }(j-1)+1\). 二维差分一下,我们只要能求\(\sum\limits_{i=0}^x\sum\limits_ ...
- 洛谷P2606 [ZJOI2010]排列计数(数位dp)
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷$P$2235 $Kathy$函数 $[HNOI2002]$ 数位$dp$
正解:数位$dp$ 解题报告: 传送门$qwq$ $HNOI$的题从02年就这么神了嘛$QAQ$,,, 嗷对了这题如果看出了一个结论就是个数位$dp$板子,,,?但是结论很神我$jio$得挺难看出来的 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
随机推荐
- PV 和 UV IP
PV(page view),即页面浏览量,或点击量;通常是衡量一个网络新闻频道或网站甚至一条网络新闻的主要指标. 高手对pv的解释是,一个访问者在24小时(0点到24点)内到底看了你网站几个页面.这里 ...
- 用nfs挂载内核时出错 ERROR: Cannot umount的解决办法
SMDK2440 # nfs 30000000 192.168.1.106:/work/nfs_root/uImage ERROR: resetting ...
- jackson 进行json与java对象转换 之四
jackson简单使用,对象转json,json转对象,json转list POJO序列化为json字符串: 准备一个POJO: @JsonIgnoreProperties(ignoreUnkno ...
- ABP缓存
简介 缓存是做什么的? 简单的可以认为是一个键值对的数据存于内存中,高速读取.作用为了减少和数据库的交互 Abp中缓存的使用 public class InvoiceAppService : Appl ...
- Delphi Cookie
Cookie IdHTTP1.CookieManager.AddCookies(); IdHTTP1.Post(); IdHTTP1.Get('http://1.1.1.1:9000/'); for ...
- solr安装部署、solr测试创建core、用solrj 访问solr(索引和搜索)
一.安装solr4.8: 1.把apache-solr-4.8.1\example\webapps下的solr.war文件拷贝到Tomcat下的Tomcat7.0\webapps目录下,tomcat启 ...
- 2018多校第九场1010 (HDU6424) 数学
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6424 解法:找规律.因为最多三项,a1^a2^a3可以拆成(a1+2)+(a2+1)*a3,然后建成数 ...
- php 中两种获得数据库中 数据条数的方法
一种是传统的利用mysql_num_rows()来计算 $sql="select * from news"; $res=mysql_query($sql); $number=mys ...
- loj10088 出纳员问题
传送门 分析 我们设pre[i]为到第i个时段的雇佣员工的总数量,sum[i]表示时段i的可雇佣员工的总数量,r[i]表示时段i所需工人的数量.由此我们不难求出: 0<=pre[i]-pre[i ...
- PersonDto中@ResourceAccess(readOnly = true)以及swagger的理解-----似懂非懂,日后消化
@JsonApiResource(type = PersonDto.RESOURCE_TYPE) @EntityMapping(entityClass = Person.class) //@Resou ...