题意

题目链接

\(n\)个节点的树,点有点权,找出互不相交的两条链,使得权值和最大

Sol

这辈子也不会写树形dp的

也就是有几种情况,可以讨论一下。。

下文的“最大值”指的是“路径上权值和的最大值”

设\(f[i][0]\)表示以\(i\)为根的子树中选出两条不相交的链的最大值

\(f[i][1]\)表示以\(i\)为根的子树中选出一条链的最大值

\(g[i]\)表示以\(i\)为根的子树中从\(i\)到叶子节点 加上一条与之不相交的链的最大值

\(h[i]\)表示\(max{f[son][1]}\)

\(down[i]\)表示从\(u\)到叶子节点的最大值

现在最关键的是推出\(f[i][0]\)

转移的时候有四种情况

设当前儿子为\(v\)

  1. 在\(v\)中选两条不相交的链

  2. 在不含\(v\)的节点和以\(v\)为根的子树中各选一条链

  3. down[i] + g[v] 也就是从该点和子树中分别选出半条链,再从子树内选出一条完整的链

  4. g[i] + down[v] 与上面相反。

同时\(g, down\)也是可以推出来的。。

做完了。。慢慢调吧

#include<bits/stdc++.h>
#define chmax(a, b) (a = (a > b ? a : b))
#define chmin(a, b) (a = (a < b ? a : b))
#define LL long long
using namespace std;
const int MAXN = 100010;
inline int read() {
int x = 0, f = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N;
LL a[MAXN], f[MAXN][2], g[MAXN], h[MAXN], down[MAXN];
vector<int> v[MAXN];
void dfs(int x, int fa) {
f[x][0] = f[x][1] = g[x] = down[x] = a[x]; for(int i = 0, to; i < v[x].size(); i++) {
if((to = v[x][i]) == fa) continue;
dfs(to, x);
chmax(f[x][0], f[to][0]);
chmax(f[x][0], f[x][1] + f[to][1]);
chmax(f[x][0], down[x] + g[to]);
chmax(f[x][0], down[to] + g[x]); chmax(f[x][1], f[to][1]);
chmax(f[x][1], down[x] + down[to]); chmax(g[x], g[to] + a[x]);
//chmax(g[x], down[to] + f[x][1]);
chmax(g[x], down[x] + f[to][1]);
chmax(g[x], down[to] + a[x] + h[x]); chmax(h[x], f[to][1]); chmax(down[x], a[x] + down[to]);
}
}
main() {
N = read();
for(int i = 1; i <= N; i++) a[i] = read();
for(int i = 1; i <= N - 1; i++) {
int x = read(), y = read();
v[x].push_back(y); v[y].push_back(x);
}
dfs(1, 0);
cout << f[1][0];
}
/* */

cf633F. The Chocolate Spree(树形dp)的更多相关文章

  1. Codeforces 633F The Chocolate Spree 树形dp

    The Chocolate Spree 对拍拍了半天才知道哪里写错了.. dp[ i ][ j ][ k ]表示在 i 这棵子树中有 j 条链, 是否有链延伸上来. #include<bits/ ...

  2. CF 633 F. The Chocolate Spree 树形dp

    题目链接 CF 633 F. The Chocolate Spree 题解 维护子数答案 子数直径 子数最远点 单子数最长直径 (最长的 最远点+一条链) 讨论转移 代码 #include<ve ...

  3. CF633F The Chocolate Spree

    Description Alice and Bob have a tree (undirected acyclic connected graph). There are \(a_{i}\) choc ...

  4. codeforces 633F The Chocolate Spree (树形dp)

    题目链接:http://codeforces.com/problemset/problem/633/F 题解:看起来很像是树形dp其实就是单纯的树上递归,就是挺难想到的. 显然要求最优解肯定是取最大的 ...

  5. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  6. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  7. 【BZOJ-4726】Sabota? 树形DP

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved ...

  8. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  9. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

随机推荐

  1. 【RMQ】【Sparse_Table算法】

    摘自网友,具体哪个忘记了,抱歉~ 定义: RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题: 对于长度为n的数列A,回答若干询问RMQ(A,i,j) ...

  2. Python字典基础知识补充

    1.添加键值对 #!/usr/bin/env python i1 = {'k1':'cai' , 'k2':123} print(i1) i1['k3'] = 0 i1['k4'] = "r ...

  3. 使用css实现垂直居中

    vartical-align vartical-align可以设置行内元素和表格单元格(table-cell)垂直对方式,所以如果元素是行内元素或者表格的话,可以直接应用这个属性对内容进行对齐设置.如 ...

  4. POJ1056 IMMEDIATE DECODABILITY & POJ3630 Phone List

    题目来源:http://poj.org/problem?id=1056   http://poj.org/problem?id=3630 两题非常类似,所以在这里一并做了. 1056题目大意: 如果一 ...

  5. spring boot中 启用aspectj

    <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring- ...

  6. 浅谈关于树形dp求树的直径问题

    在一个有n个节点,n-1条无向边的无向图中,求图中最远两个节点的距离,那么将这个图看做一棵无根树,要求的即是树的直径. 求树的直径主要有两种方法:树形dp和两次bfs/dfs,因为我太菜了不会写后者这 ...

  7. C#工具类之日期扩展类

    /// <summary> /// DateTimeHelper /// </summary> public static class DateTimeHelper { /// ...

  8. linux学习五

    一.系统服务管理 1.概念 服务(service) 本质就是进程,但是是运行在后台的,通常都会监听某个端口,等待其它程 序的请求,比如(mysql , sshd 防火墙等),因此我们又称为守护进程,是 ...

  9. Jenkins自动化CI CD流水线之7--流水线自动化发布PHP项目

    一.前提 环境为:lnmp PHP项目:wordpress(此处我们下载一个wordpress的源码.将其模拟为我们的代码上传到我们的git仓库) 二.配置 1)创建job 2)参数化构建 3)配置p ...

  10. man bash 关于shell的应有尽有 语法、快捷键...

    文件加载顺序 for if case ... 语法 往前移动一个单词 alt f https://github.com/hokein/Wiki/wiki/Bash-Shell%E5%B8%B8%E7% ...