[bzoj1001][BJOI2006]狼抓兔子——最大流转最短路,平面图
题目描述:
给定一个平面图,求最小割。
题解:
本题是一道经典题.
周冬Orz的论文是很好的研究资料。
这道题点太多,所以直接跑dinic无疑会超时。
我们观察原图,发现原图是一个平面图。
什么是平面图呢?平面图就是可以画在平面上,边没有交错的图。
平面图有几个很吼的性质:
- 欧拉定理(欧拉的定理真多。。):如果平面图把平面分为f个面,有n个点,m条边,那么我们有:
\]
- 任何一个平面图的对偶图还是一个平面图。
这里的对偶图指的是把原图中的面当作点,边还是边进行构图得到的图。
我们很容易发现,对偶图中的一个环就是原图的一个最小割。
但是,显然我们求环还是比较麻烦的。
我们考察原图性质,
如果在st中间连一条新边,显然新图还是平面图,同时会比原图多出一个面,我们称之为副面,
对于这个新图,我们构对偶图,同时令副面和最大的面一个为起点,一个为终点,显然对偶图中的最短路就是原图的一个最小割。
然后spfa解决就好辣。
本题最恶心的点在于建对偶图。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = (1000 * 1000 + 50) * 2;
int n, m, nm, s, t;
int dist[maxn];
struct edge {
int to, weigh;
};
vector<edge> G[maxn];
void add_edge(int from, int to, int weigh) {
G[from].push_back((edge){to, weigh});
G[to].push_back((edge){from, weigh});
}
void spfa() {
queue<int> q;
memset(dist, 127, sizeof(dist));
dist[s] = 0;
q.push(s);
int inq[maxn];
memset(inq, 0, sizeof(inq));
inq[s] = 1;
while (!q.empty()) {
int u = q.front();
q.pop();
inq[u] = 0;
for (int i = 0; i < G[u].size(); i++) {
edge &e = G[u][i];
if (dist[e.to] > dist[u] + e.weigh) {
dist[e.to] = dist[u] + e.weigh;
if (inq[e.to] == 0) {
q.push(e.to);
inq[e.to] = 1;
}
}
}
}
}
int main() {
scanf("%d%d", &n, &m);
nm = (n * m - m - n + 1) << 1;
s = 0, t = nm + 1;
//横向边
int x;
for (int j = 1; j < m; j++) {
scanf("%d", &x);
add_edge(j, t, x);
}
for (int i = 1; i < (n - 1); i++) {
for (int j = 1; j < m; j++) {
scanf("%d", &x);
add_edge((i << 1) * (m - 1) + j, ((i << 1) - 1) * (m - 1) + j, x);
}
}
for (int j = 1; j < m; j++) {
scanf("%d", &x);
add_edge(((n << 1) - 3) * (m - 1) + j, 0, x);
}
//纵向边
for (int i = 0; i < n - 1; i++) {
for (int j = 1; j <= m; j++) {
scanf("%d", &x);
if (j == 1)
add_edge(0, (i << 1) * (m - 1) + m, x);
else if (j == m)
add_edge((i << 1 | 1) * (m - 1), t, x);
else
add_edge((i << 1) * (m - 1) + j - 1, (i << 1) * (m - 1) + j + m - 1, x);
}
}
//斜
for (int i = 0; i < n - 1; i++) {
for (int j = 1; j < m; j++) {
scanf("%d", &x);
add_edge((i << 1 | 1) * (m - 1) + j, (i << 1) * (m - 1) + j, x);
}
}
spfa();
printf("%d", dist[t]);
}
[bzoj1001][BJOI2006]狼抓兔子——最大流转最短路,平面图的更多相关文章
- BZOJ1001 BJOI2006 狼抓兔子
Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个 ...
- BZOJ1001 BJOI2006狼抓兔子(最小割+最短路)
显然答案就是最小割.直接跑dinic也能过,不过显得不太靠谱. 考虑更正确的做法.作为一个平面图,如果要把他割成两半,那么显然可以用一条曲线覆盖且仅覆盖所有割边.于是我们把空白区域看成点,隔开他们的边 ...
- 【BZOJ1001】狼抓兔子(网络流)
[BZOJ1001]狼抓兔子(网络流) 题面 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨, ...
- P4001 [BJOI2006]狼抓兔子(对偶图)
P4001 [BJOI2006]狼抓兔子 最短路+对偶图 看这题最容易想到的就是网络流.Dinic可以过,据说还跑得比正解快. 如果不写网络流,那么需要知道2个前置知识:平面图和对偶图(右转baidu ...
- 【BZOJ1001】狼抓兔子(平面图转对偶图,最短路)
[BZOJ1001]狼抓兔子(平面图转对偶图,最短路) 题面 BZOJ 洛谷 题解 这题用最小割可以直接做 今天再学习了一下平面图转对偶图的做法 大致的思路如下: 1.将源点到汇点中再补一条不与任何线 ...
- BZOJ1001 BeiJing2006 狼抓兔子 【网络流-最小割】*
BZOJ1001 BeiJing2006 狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较 ...
- [bzoj1001][BeiJing2006]狼抓兔子_网络流_最小割转对偶图
狼抓兔子 bzoj-1001 BeiJing2006 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还 ...
- [BZOJ1001][BeiJing2006]狼抓兔子(最小割转最短路|平面图转对偶图)
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 31805 Solved: 8494[Submit][ ...
- BZOJ1001: [BeiJing2006]狼抓兔子 [最小割 | 对偶图+spfa]
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 19528 Solved: 4818[Submit][ ...
随机推荐
- graphviz使用
官方网站:http://www.graphviz.org/ Graphviz (Graph Visualization Software) 是一个由AT&T实验室启动的开源工具包.DOT是一种 ...
- Android 微信支付步骤
以前自己写过微信支付,今天让我用h5调用微信支付,结果还浪费了点时间,虽然时间不长. 1.导入jar包 .微信提供的jar包 2.写你的微信支付的代码,其实如果参数都有了就一段代码: public v ...
- 【Java集合源码剖析】Java集合框架
Java集合工具包位于Java.util包下,包含了很多常用的数据结构,如数组.链表.栈.队列.集合.哈希表等.学习Java集合框架下大致可以分为如下五个部分:List列表.Set集合.Map映射.迭 ...
- 让菜鸡讲一讲费用流(EK)
让我再讲一个故事吧. 又有一些小精灵要准备从银月城(S)迁徙到Nibel山(T). 这两个地方之间的道路构成了一个网络. 每个道路都有它自己的容量,这决定了每天有多少小精灵可以同时从这儿通过. 和上一 ...
- 用scrapy数据抓取实践
本文来自网易云社区 作者:沈高峰 数据分析中需要用到的不少数据都是需要进行抓取的,并且需要对抓取的数据进行解析之后存入数据库.scrapy是一个强大的爬虫框架,本文简单介绍下使用scrapy进行垂直抓 ...
- Kinect关于PlayerIndex和SkeletonId之间的关系。
项目中要锁定玩家骨骼后抠图, 一时没有灵感.google 关键词: the ralationship about skeletonid and playerindex. 结论: Player Segm ...
- Selenium+Python自动化之如何绕过登录验证码
一.使用Fiddler抓包 1.一般登陆网站成功后,会生成一个已登录状态的cookie,那么只需要直接把这个值拿到,用selenium进行addCookie操作即可. 2.可以先手动登录一次,然后抓取 ...
- Python 3基础教程12-常见的错误
本文来介绍几种常见的错误,任何人在刚开始接触一个新的语言,即使照着代码抄写,也可能会犯错误,这里我们就介绍几种常见的错误,看看你是否遇到过. 1. NameError: name 'xxx' is n ...
- Eclipse下使用SVN插件从服务器获取工程
1.打开Eclipse 4.4,在Eclipse里打开SVN资源库窗口:点击菜单window-->show view-->other:然后再弹出窗口展开SVN节点,选择SVN资源库 2 ...
- HDU 4472 Count (DP)
题目:问n个节点构成完全对称的树有多少种方法. 因为树是完全对称的,所以它的子树也是完全对称的. 对于每个树,拿出一个根节点,枚举剩下的节点能拆分成多少个子树. #include <cstdio ...