传送门

分析

dp[i][j]为考虑前i个位置,[i-j+1,i]中的颜色互不相同,并且ai-j与这段区间中的某一个位置颜色相同

我们枚举第i+1个位置和[i-j+1,i]中的哪一个颜色相同或者全部不同,进行转移

dp[i][j]=dp[i-1][j-1]*(m-j+1)

dp[i][j]+=dp[i-1][k](k>=j)

发现第二个转移可以前缀和优化一下,显然dp[i+1][j]可以从dp[i][1~j]转移而来

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
long long n,m,k,dp[][],sum[][];
int main(){
long long i,j,k;
scanf("%lld%lld%lld",&n,&m,&k);
long long now=;
dp[now][]=;
for(i=;i<=n;i++){
now^=;
memset(dp[now],,sizeof(dp[now]));
memset(sum[now],,sizeof(sum[now]));
for(j=;j<=min(i,m-);j++){
dp[now][j]=(dp[now][j]+dp[now^][j-]*(m-j+))%k;
dp[now][j]=(dp[now][j]+sum[now^][j])%k;
}
for(j=n;j>;j--)
sum[now][j]=(sum[now][j+]+dp[now][j])%k;
}
long long ans=;
for(i=;i<m;i++)ans=(ans+dp[now][i])%k;
printf("%lld\n",ans);
return ;
}

noi.ac day3t2 染色的更多相关文章

  1. [NOI.AC 2018NOIP模拟赛 第三场 ] 染色 解题报告 (DP)

    题目链接:http://noi.ac/contest/12/problem/37 题目: 小W收到了一张纸带,纸带上有 n个位置.现在他想把这个纸带染色,他一共有 m 种颜色,每个位置都可以染任意颜色 ...

  2. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

  3. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  4. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  5. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  6. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  7. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  8. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  9. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

随机推荐

  1. BeetleX高性能通讯开源组件

    net core高性能通讯开源组件BeetleX https://www.cnblogs.com/smark/p/9617682.html BeetleX beetleX是基于dotnet core实 ...

  2. Audiophobia(Floyd算法)

    个人心得:这在一定途径上完成查询方面还是很吃力,得多锻炼空间能力,不能再每次都看到就后退,要全力应对, 那怕被虐的不要不要的. 这题主要是求俩个端点中所有路径中最大构成的集合中最小的数值,其实开始思想 ...

  3. LeetCode Continuous Subarray Sum

    原题链接在这里:https://leetcode.com/problems/continuous-subarray-sum/description/ 题目: Given a list of non-n ...

  4. DP 问题

    什么时候使用DP: 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理.(这句话可理解为先将复杂的问题简单化, 达到最简后的解题公式同样可以解复杂情况 ...

  5. electron 安装失败解决办法

    1.安装node https://nodejs.org/en/download/2.安装镜像工具npm install -g cnpm --registry=https://registry.npm. ...

  6. fastjson --JSONObject 和JSONArray 转换

    fastjson解析:resultValue=[    {        "total": 1,        "saleLists": [           ...

  7. Azure VM开启资源监控

    目前China的Azure VM资源监控默认是不打开的.本文将介绍如何开启VM的监控功能. 一 Azure VM 打开Azure的Portal页面https://portal.azure.cn,登录后 ...

  8. linux 学习 端口占用 && 内存使用

    安装: apt-get update apt-get install net-tools Linux上:netstat -anop | grep ':50001' windows上:netstat - ...

  9. Git学习笔记(三)远程库(GitHub)协同开发,fork和忽略特殊文件

    远程库 远程库,通俗的讲就是不再本地的git仓库!他的工作方式和我们本地的一样,但是要使用他就需要先建立连接! 远程库有两种,一个是自己搭建的git服务器:另一种就是使用GitHub,这个网站就是提供 ...

  10. 图解缓存淘汰算法一之LRU

    1.概念分析 LRU(Least Recently Used),即最近最少使用.怎么理解这个概念呢?我一开始见到这个概念的时候,以为"最近","最少"都是修饰使 ...