题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5534

题目大意是给了n个结点,让后让构成一个树,假设每个节点的度为r1, r2, ...rn,求f(x1)+f(x2)+...+f(xn)的最大值。

首先由于是树,所以有n-1条边,然后每条边连接两个节点,所以总的度数应该为2(n-1)。

此外每个结点至少应该有一个度。

所以r1+r2+...rn = 2n-2。ri >= 1;

首先想到让ri >= 1这个条件消失:

令xi = ri,则x1+x2+...xn = n-2。

然后把所有f的脚标减一。即新f(i) = 原f(i+1)

这样就相当于总和一定,求新f的和的最大值。而且与x的大小顺序无关。

但是到这里利用p(i) = max(p(i), p(i-j)+f(j))的话,需要遍历选取次数、i和j。这个复杂度应该是n^2(n-1)/2,是n^3级别的复杂度。

考虑到0取和不取,虽然不影响i的大小,但是会影响p(i)的大小,而且一个数取了一个0之后,就会少一个数。

于是又有一个消除0的条件:

令f(i) = f(i)-f(0),这样取0的贡献就是0,但是其他值的贡献是与f(0)的差值。

那么最后答案加上原f(0)*n即可。

然后就发现没了0的贡献后,其他值都随便取,而且不会超过n个数。

然后就类似于完全背包一样,利用p(i) = max(p(i), p(i-j)+f(j))即可。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long using namespace std; const int maxN = ;
int n, f[maxN], p[maxN], ans; void input()
{
scanf("%d", &n);
scanf("%d", &f[]);
for (int i = ; i < n-; ++i)
{
scanf("%d", &f[i]);
f[i] -= f[];
}
ans = f[]*n;
f[] = ;
memset(p, -, sizeof(p));
p[] = ;
} int myMax(int x, int y)
{
if (x == -) return y;
else return max(x, y);
} void work()
{
for (int i = ; i <= n-; ++i)
for (int j = i; j <= n-; ++j)
p[j] = myMax(p[j], p[j-i]+f[i]);
ans += p[n-];
printf("%d\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
int T;
scanf("%d", &T);
for (int times = ; times < T; ++times)
{
input();
work();
}
return ;
}

ACM学习历程—HDU 5534 Partial Tree(动态规划)的更多相关文章

  1. HDU 5534 Partial Tree 完全背包

    一棵树一共有2*(n-1)度,现在的任务就是将这些度分配到n个节点,使这n个节点的权值和最大. 思路:因为这是一棵树,所以每个节点的度数都是大于1的,所以事先给每个节点分配一度,答案 ans=f[1] ...

  2. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  3. 2015ACM/ICPC亚洲区长春站 H hdu 5534 Partial Tree

    Partial Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)To ...

  4. HDU - 5534 Partial Tree(每种都装的完全背包)

    Partial Tree In mathematics, and more specifically in graph theory, a tree is an undirected graph in ...

  5. ACM学习历程—HDU 3092 Least common multiple(数论 && 动态规划 && 大数)

    Description Partychen like to do mathematical problems. One day, when he was doing on a least common ...

  6. HDU 5534 Partial Tree (完全背包变形)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5534 题意: 给你度为1 ~ n - 1节点的权值,让你构造一棵树,使其权值和最大. 思路: 一棵树上 ...

  7. ACM学习历程—HDU 5536 Chip Factory(xor && 字典树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5536 题目大意是给了一个序列,求(si+sj)^sk的最大值. 首先n有1000,暴力理论上是不行的. ...

  8. ACM学习历程—HDU 5512 Pagodas(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...

  9. hdu 5534 Partial Tree(完全背包)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5534 题解:这题一看有点像树形dp但是树形dp显然没什么思路.然后由于这里的约束几乎没有就 ...

随机推荐

  1. EasyNVR无插件直播服务器软件使用详情功能-通道配置Excel

    背景需求 使用EasyNVR的用户都有知道,由于EasyNVR是将设备与EasyNVR的通道进行绑定的,因此EasyNVR是通过手动的通道配置来进行设备接入的,这样可以做到将设备的和通道对应的接入.但 ...

  2. 九度OJ 1184:二叉树遍历 (二叉树)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3515 解决:1400 题目描述: 编一个程序,读入用户输入的一串先序遍历字符串,根据此字符串建立一个二叉树(以指针方式存储). 例如如下的 ...

  3. 几则js表达式

    过滤大段文本里的标签.标签格式 <...>,如下匹配标签然后替换成空 校验邮箱是否符合: 去掉行首行尾空格: 检测字符串是否包含中文:(utf8编码)

  4. unix网络编程笔记(二)

    第四章笔记 1. 基本Tcpclient/server程序的套接字函数 2. socket函数: int socket(int family,int type,int protocol); (1)so ...

  5. windows下安装PyQt4

    第一步:确认自己电脑上的Python版本.然后下载对应的.whl文件下载 第二步:https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyqt4上下载对应版本版本的 ...

  6. STM32L0 复位和时钟控制 Reset and clock control (RCC)

    时钟源: HSE:外部时钟 HSI16:可以直接用于系统时钟或者作为PLL输入.一般是1%精度 HSI48:The HSI48 clock signal is generated from an in ...

  7. JETSON TK1 ~ 基于eclipse下开发ROS

    此文档是在PC端开发后移植到TK1,并非在TK1上安装eclipse 官方使用IDE开发的文档: http://wiki.ros.org/IDEs 一:安装eclipse 1.下载eclipse安装包 ...

  8. 用cocos2d-html5做的消除类游戏《英雄爱消除》(2)——Block设计实现

    Block可以说是这个游戏的核心类,它除了包含自身的一些属性和方法外还添加了对触摸事件的响应. 我们先来看下源码吧 /** * Power by html5中文网(html5china.com) * ...

  9. 牛客小白月赛1 F 三视图 【循环】

    题目链接 https://www.nowcoder.com/acm/contest/85/F 思路 记录每一个面 上的点 是否有方块 然后 根据它的输出顺序 遍历访问 如果有 输出 'X' 否则 输出 ...

  10. 【leetcode刷题笔记】Count and Say

    The count-and-say sequence is the sequence of integers beginning as follows:1, 11, 21, 1211, 111221, ...