质因数分解套路的复杂度分析的动态规划

题目大意

有一颗$n$个节点有点权的树,初始整棵树为$1$号区域,要求满足下列规则:

  • 除非$i$是最后一个等级,否则每一个$i$级区域都要被分成至少两个$i+1$级区域
  • 对于每种等级,每个点必须恰好属于一个区域
  • 一个区域的点集必须是连通的
  • 对于相同等级,每个区域必须拥有相同的点权和

问有多少种合法的划分方案,$n \le 10^6,a_i \le 10^9$.


题目分析

首先考虑判断把树分为$k$个2级区域的合法性$f_k$,记点权和为$tot$。

一种朴素的想法就是对于每一个$k$,自底向上遍历整棵树,若剩余子树大小恰好为$tot\over k$,就割去这颗子树;如果整棵树能够被处理完,$k$就是合法的。每次判定复杂度为$O(n)$.

注意到这个想法里,每次割去子树的大小$s_i$恰好是$tot\over k$的倍数;并且不难发现,$k$合法的充要条件就是恰有$k$个$s_i≡0(\text{mod }\frac{tot}{k})$。简短解释一下:对于一颗$s_i≡0(\text{mod }\frac{tot}{k})$的子树,由于它的所有子树都奉行割去$s_j≡0(\text{mod }\frac{tot}{k})$的原则,那么剩下的包括点$i$的连通块就是$i$子树内最小的$\ge {tot\over k}$的连通块。因此,$\sum [s_k≡0(\text{mod }\frac{tot}{k})] \le k$;并且当且仅当$=k$时合法。

有了这个性质,考虑如何统计$f_k$。容易发现对于合法的$k$,$\frac{tot}{k}$的任意约数$k'$都是合法的。而对于子树$s_i$,其最小有贡献的$k=\frac{tot}{\text{gcd}(s_i,tot)}$。所以这里只需要对每个$s_i$存下最小的合法$k$,再以质因数分解题的套路处理一遍就能算出$[f_k=k]$了。因此处理$f_k$的复杂度是$O(n\ln n)$。

接下去考虑dp计算把整棵树分为若干个$i$级区域的方案数$g_i$。

【动态规划】cf1034C. Region Separation的更多相关文章

  1. Codeforces Round #511 (Div. 1) C. Region Separation(dp + 数论)

    题意 一棵 \(n\) 个点的树,每个点有权值 \(a_i\) .你想砍树. 你可以砍任意次,每次你选择一些边断开,需要满足砍完后每个连通块的权值和是相等的.求有多少种砍树方案. \(n \le 10 ...

  2. 2018.9.21 Codeforces Round #511(Div.2)

    只写了AB,甚至还WA了一次A题,暴露了蒟蒻的本质=.= 感觉考的时候有好多正确或和正解有关的思路,但是就想不出具体的解法或者想的不够深(长)(怕不是过于鶸) 话说CF的E题怎么都这么清奇=.= A. ...

  3. [CF]Round511

    这场比赛我及时的参加了,但是打的时候状态实在是太烂了,只做出来了Div2的AB题. A Little C loves 3 I 直接构造就行. B Cover Points 应该很容易就看出来这个等腰三 ...

  4. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  5. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  6. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  7. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  8. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  9. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

随机推荐

  1. LeetCode 455.分发饼干(C++)

    假设你是一位很棒的家长,想要给你的孩子们一些小饼干.但是,每个孩子最多只能给一块饼干.对每个孩子 i ,都有一个胃口值 gi ,这是能让孩子们满足胃口的饼干的最小尺寸:并且每块饼干 j ,都有一个尺寸 ...

  2. phpmyadmin 开放远程登录的权限

    *linux下的修改* 在phpmyadmin.conf 加上如下试一下 <Directory "phpmyadmin路径">     AllowOverride No ...

  3. CSS零碎知识点

    一.zoom:1 IE专有属性 可以设置或检索对象的缩放比例 触发IE的layout属性 清除浮动:overflow:hidden;zoom:1; 但要尽量比较使用这种方法 zoom:1;可以拯救IE ...

  4. guava的重试机制guava-retrying使用

    1,添加maven依赖 <dependency> <groupId>com.github.rholder</groupId> <artifactId>g ...

  5. android 扇形菜单

    引言: android中的菜单与windows的菜单没有什么区别,基本就是一个矩形框,如下: 这个菜单有多么能经得住历史的考验我就不多说了!我们再来看看最新有关手机可操作区域的调查 有此可以看出屏幕越 ...

  6. Android基础Activity篇——其他隐式Intent

    1.使用隐式Intent调用浏览器 修改FirstActivity中的按钮点击事件代码. Intent intent=new Intent(Intent.ACTION_VIEW); intent.se ...

  7. int **a 和 int (*a)[]的区别

    关于理论知识隔壁们的教程说的很详细了我就不多赘述了.我这边主要贴一段代码来看看这两种东西使用上的区别到底在哪. #include <stdio.h> int main(int argc, ...

  8. SQLSERVER 2008 R2 事务日志已满

    方法一: USE [master] GO ALTER DATABASE DNName SET RECOVERY SIMPLE WITH NO_WAIT GO ALTER DATABASE DNName ...

  9. adobe air ane 中有的java class 打包 apk 后却没有了报NoClassDefFoundError ,ClassNotFoundException

    apache flex sdk 手机项目 09-18 10:34:55.030: E/AndroidRuntime(19513): FATAL EXCEPTION: main 09-18 10:34: ...

  10. 算法练习-字符串转换成整数(实现atoi函数)

    练习问题来源 https://leetcode.com/problems/string-to-integer-atoi/ https://wizardforcel.gitbooks.io/the-ar ...