题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4126

题意:给出一幅3000个点的图,有10000次操作: 求将某条边的权值变大后的最小生成树,最后输出10000次操作得到的最小生成树权值的平均值。

分析:

对于每次询问, 都是将a,b之间的边增加到c, 会出现 两种情况:

1. 如果边权增加的那条边原先就不在最小生成树中,那么这时候的最小生成树的值不变

2. 如果该边在原最小生成树中,那么这时候将增加的边从原最小生成树中去掉,这时候生成树就被分成了两个各自联通的部分,可以证明的是,这时候的最小生成树一定是将这两部分联通起来的最小的那条边。

设dp[i][j]表示去掉最小生成树中的边(i,j)分成两个联通部分后,再次将他们再次连接起来的最小的那条边长。

那么对于每点pos开始往下dfs,不断维护一个dis[pos][u](u为树上的另一点)的最小值ans,搜完子树的子节点后让最小值ans=dp[u][v],因为断开边(u,v)后靠pos连接v子树上的某一节点使得以u和v为根节点的两颗子树再次连接起来。

#pragma comment(linker,"/STACK:102400000,102400000")
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 1000000007
#define inf 0x3f3f3f3f
#define N 3010
#define FILL(a,b) (memset(a,b,sizeof(a)))
using namespace std;
struct edge
{
int u,v,w;
bool operator<(const edge &a)const
{
return w<a.w;
}
}e[N*N];
int dis[N][N],dp[N][N],vis[N][N],fa[N];
int n,m,q;
vector<int>g[N];
int find(int x)
{
return x==fa[x]?x:fa[x]=find(fa[x]);
}
void init()
{
for(int i=;i<n;i++)
{
fa[i]=i;g[i].clear();
for(int j=;j<n;j++)
dis[i][j]=dp[i][j]=inf;
}
FILL(vis,);
}
int kruskal()
{
int res=;
for(int i=;i<m;i++)
{
int a=find(e[i].u);
int b=find(e[i].v);
if(a!=b)
{
fa[a]=b;
res+=e[i].w;
vis[e[i].u][e[i].v]=vis[e[i].v][e[i].u]=;//uv这条边在最小生成树上
g[e[i].u].push_back(e[i].v);//构造最小生成树
g[e[i].v].push_back(e[i].u);
}
}
return res;
}
int dfs(int pos,int u,int fa)
{
int ans=inf;
for(int i=,size=g[u].size();i<size;i++)
{
int v=g[u][i];
if(v==fa)continue;
int mn=dfs(pos,v,u);
ans=min(ans,mn);
dp[u][v]=dp[v][u]=min(dp[u][v],mn);
}
//不断维护一个pos到v上的某一子节点的最小距离,保证边(u,v)断后ans为最优取代边,前提是(u,v)这条边不知最小生成树上
if(fa!=pos)ans=min(ans,dis[pos][u]);
return ans;
}
int main()
{
int a,b,c;
while(scanf("%d%d",&n,&m)>)
{
if(m+n==)break;
init();
for(int i=;i<m;i++)
{
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
dis[e[i].u][e[i].v]=dis[e[i].v][e[i].u]=e[i].w;//点u点v的距离
}
sort(e,e+m);
int mst=kruskal();
for(int i=;i<n;i++)
{
dfs(i,i,-);
}
scanf("%d",&q);
double sum=;
for(int i=;i<q;i++)
{
scanf("%d%d%d",&a,&b,&c);
if(!vis[a][b])
{
sum+=mst;
}
else
{
sum+=mst-dis[a][b]+min(c,dp[a][b]);
}
}
printf("%.4lf\n",sum/q);
}
}

hdu4126(最小生成树+dfs)的更多相关文章

  1. HDU 5723 Abandoned country (最小生成树 + dfs)

    Abandoned country 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5723 Description An abandoned coun ...

  2. HDU 5723 Abandoned country (最小生成树+dfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5723 n个村庄m条双向路,从中要选一些路重建使得村庄直接或间接相连且花费最少,这个问题就是很明显的求最 ...

  3. HDU 2489 Minimal Ratio Tree 最小生成树+DFS

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. CodeForces160D 最小生成树 + dfs

    https://cn.vjudge.net/problem/26727/origin 题目大意: 给一个带权的无向图,保证没有自环和重边. 由于最小生成树不唯一,因此你需要确定每一条边是以下三种情况哪 ...

  5. 【BZOJ3551】[ONTAK2010]Peaks加强版 最小生成树+DFS序+主席树

    [BZOJ3545][ONTAK2010]Peaks Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困 ...

  6. BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  7. $bzoj1016-JSOI2008$ 最小生成树计数 最小生成树 $dfs/matrix-tree$定理

    题面描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的 ...

  8. HDU 4081 Peach Blossom Spring (最小生成树+dfs)

    题意:给定一个 n 个点和相应的权值,要求你用 n-1 条边连接起来,其中一条边是魔法边,不用任何费用,其他的边是长度,求该魔法边的两端的权值与其他边费用的尽量大. 析:先求出最小生成树,然后再枚举每 ...

  9. cf Inverse the Problem (最小生成树+DFS)

    题意: N个点.N行N列d[i][j]. d[i][j]:结点i到结点j的距离. 问这N个点是否可能是一棵树.是输出YES,否则输出NO. 思路: 假设这个完全图是由一棵树得来的,则我们对这个完全图求 ...

随机推荐

  1. 数据层交换和高性能并发处理(开源ETL大数据治理工具--KETTLE使用及二次开发 )

    ETL是什么?为什么要使用ETL?KETTLE是什么?为什么要学KETTLE?        ETL是数据的抽取清洗转换加载的过程,是数据进入数据仓库进行大数据分析的载入过程,目前流行的数据进入仓库的 ...

  2. 深入浅出Hadoop实战开发(HDFS实战图片、MapReduce、HBase实战微博、Hive应用)

    Hadoop是什么,为什么要学习Hadoop?     Hadoop是一个分布式系统基础架构,由Apache基金会开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运 ...

  3. 树状DP

    紫皮,各种,非原创 树状数组在我的理解就是在决策过程中具有层次关系,像是树一样,具有上下级关系或者上级对上级一定程度的限制条件 uva 12186 工人的请愿书 下属中不小于 T% 的人签字时会签字递 ...

  4. Vertica数据库操作

    删除主键(Vertica数据库的主键值并非唯一的): SELECT ANALYZE_CONSTRAINTS('fb_s.c_log'); 找到key名,再: ALTER TABLE fb_s.c_lo ...

  5. Net Core-Razor

    几行代码解决Razor中的嵌套if语句 MVC开发中,经常会遇到在razor中插入简单的逻辑判断. @if (clientManager.IsAdmin) { if (!Model.Topic.Top ...

  6. JavaScript快速入门(四)——JavaScript函数

    函数声明 之前说的三种函数声明中(参见JavaScript快速入门(二)——JavaScript变量),使用Function构造函数的声明方法比较少见,我们暂时不提.function func() { ...

  7. 简单的ajax获取json

    一个DBhelper类,用来操作数据库 using System; using System.Collections.Generic; using System.Linq; using System. ...

  8. HDU1584:蜘蛛牌(DFS)

    Problem Description 蜘蛛牌是windows xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么 ...

  9. 在界面线程不能使用Sleep和WaitForSingleObject之类的函数, 使用 MsgWaitForMultipleObjects

    http://blog.csdn.net/wishfly/article/details/3726985 你在主线程用了WaitForSingleObject,导致了消息循环的阻塞,界面假死. 然后在 ...

  10. C++ map

    C++ map Map is an associative container that contains a sorted list of unique key-value pairs. That ...