ICIC Express Letters                          ICIC
International ⓒ2010 ISSN 1881-803X

Volume4, Number5,
October 2010                                                pp.1–6

 

A Novel Multi-label Classification Based on PCA and ML-KNN

Di Wu, Dapeng Zhang, Fengqin Yang, Xu Zhou and Tieli Sun*

School of Computer
Science and Information Technology

Northeast Normal University

Changchun, 130117, P. R. China

suntl@nenu.edu.cn

ReceivedDecember
2010; accepted February 2011

Abstract.Multi-label Classification problems are omnipresent.ML-KNN
is a multi-label lazy learning approach. The feature of high dimensionsand redundancy of the dataset is not considered by ML-KNN, so the classificationresult is hard to be improved further. Principal Component Analysis (PCA) is apopular and powerful technique
for feature extraction and dimensionalityreduction. In this paper, a novel multi-label classification algorithm based onPCA and ML-KNN (named PCA-ML-KNN) is proposed. Experiments on two benchmarkdatasets for multi-label learning show that, PCA processes the
dataset in anoptimized manner, eliminating the need of huge dataset for ML-KNN, andPCA-ML-KNN achieves better performance than ML-KNN.

Keywords:Multi-label classification, ML-KNN, Dimension reduction,Feature
extraction, Principal Component Analysis (PCA)

1.Introduction.Multi-label classification is arousing more and more attention and is increasingly required by many applications in
widefields, such as protein function classification, music categorization and semantic scene classification. During the past decade, several multi-label learning algorithms have been proposed, like the multi-label decision tree based learning algorithm [1,2]
, the support vector machine based multi-labellearning algorithm [3], the ML-KNN algorithm [4,5], etc.. ML-KNN is derived from the traditional K-nearest neighbor (KNN) algorithm and is presented by Zhang and others. Several empirical studies demonstrated that
the dataset for Multi-label classification is bulky, and has the characteristic of high dimensions and redundancy. These features pose a serious obstac1e to any attempt to extract pertinent information, thus make it difficult to improve the multi-label classification
algorithms.

PCA is a technique of data analysis [6]. In fact it is a mathematical procedure that uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of uncorrelated variables called principal components. The most important application of PCA isto simplify the original data. PCA can effectively identify the most important elements in the dataset, eliminate noise
and redundancy. Another advantage ofPCA is that it has no parameter restrictions, and can be applied to variousfields.

In this paper, a novel multi-label classification algorithm based on PCA and ML-KNN is proposed for improving the classification performance. PCA is adopted to
reduce dataset dimensionality and noise. This isthe first procedure for the classification. Then ML-KNN method is used for rest processing. To verify the effectiveness of PCA-ML-KNN, two datasets, e.g. Sceneand Enron are used, and the experiments report excellent
performance.

......


*Corresponding
author

版权声明:本文博主原创文章,博客,未经同意不得转载。

A Novel Multi-label Classification Based on PCA and ML-KNN的更多相关文章

  1. Multi label 多标签分类问题(Pytorch,TensorFlow,Caffe)

    适用场景:一个输入对应多个label,或输入类别间不互斥 调用函数: 1. Pytorch使用torch.nn.BCEloss 2. Tensorflow使用tf.losses.sigmoid_cro ...

  2. [Tensorflow] Cookbook - Object Classification based on CIFAR-10

    Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...

  3. 《Benign and maligenant breast tumors classification based on region growing and CNN segmentation》翻译阅读与理解

    注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! 另:欢 ...

  4. Automatic Annotation of Airborne Images by Label Propagation Based on a Bayesian-CRF Model

    贝叶斯+全连接条件场,无人机和航片数据,通过标注航片数据自动生成无人机标注数据,具体不懂

  5. Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism

    借鉴了DenseNet的思想,用了空洞卷积而不是池化,使得特征图不会缩小,因此每个dense连接都可以直接连,最后一层是包括了前面所有层的特征图. 此外还加入了channel-wise的注意力,对每个 ...

  6. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  7. ECCV 2014 Results (16 Jun, 2014) 结果已出

    Accepted Papers     Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...

  8. A great tutorial with Jupyter notebook for ML beginners

    An end to end implementation of a Machine Learning pipeline SPANDAN MADAN Visual Computing Group, Ha ...

  9. [C2P3] Andrew Ng - Machine Learning

    ##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...

随机推荐

  1. Wamp环境下配置--Apache虚拟主机

    1.首先打开apache的配置文件httpd.conf,并去掉#Include conf/extra/httpd-vhosts.conf前面的#,启用虚拟主机功能 # Virtual hosts In ...

  2. sql优化-提防错误关联

    在写sql时,在多表关联时,有时候容易把关联关系写错.一般情况下,该问题比较容易发现,但如果sql较长时,光靠眼力就比较难发现了.今天写了一个脚本,碰到该问题了. 第一版本的脚本如下: select ...

  3. WebService开启远程测试

    WebService部署成站点之后,如果在本地测试webservice的接口可以运行,在远程却显示“测试窗体只能用于来自本地计算机的请求”或者"The test form is only a ...

  4. Android 启动过程的底层实现

    转载请标明出处:  http://blog.csdn.net/yujun411522/article/details/46367787 本文出自:[yujun411522的博客] 3.1 androi ...

  5. 使用MSPT实现二层冗余

  6. 理解Javascript的动态语言特性

    原文:理解Javascript的动态语言特性 理解Javascript的动态语言特性 Javascript是一种解释性语言,而并非编译性,它不能编译成二进制文件. 理解动态执行与闭包的概念 动态执行: ...

  7. poj3468(线段树)

    题目连接:http://poj.org/problem?id=3468 线段树功能:update:成段增减 query:区间求和. 分析:需要用到延迟标记(或者说懒惰标记),简单来说就是每次更新的时候 ...

  8. U5首次登录

    1.在Llinx中,大小写字母是不一样的东西. 2.date可以查看日期,date的正确格式是:date +%Y/%m/%d/%H/%M(左边这句话所想表达的意思是年的字母必须为大写,月的必须为小写. ...

  9. SharePoint采用BCS开发第一个应用程序(两)

    SharePoint采用BCS开发第一个应用程序(两) 创建外部数据源 在本章中,我们使用AdventureWorksLT2008 SQL Server数据库作为外部数据源.下图显示了表SalesLT ...

  10. The Swift Programming Language 中国版

    iSwifting社会的 Swift 兴趣交流群:303868520 iOS 微信公众账号:iOSDevTip Swift 微信公众账号:SwiftDev iSwifting社区 假设你认为这个项目不 ...