A Novel Multi-label Classification Based on PCA and ML-KNN
|
A Novel Multi-label Classification Based on PCA and ML-KNN
Di Wu, Dapeng Zhang, Fengqin Yang, Xu Zhou and Tieli Sun*
School of Computer
Science and Information Technology
Northeast Normal University
Changchun, 130117, P. R. China
suntl@nenu.edu.cn
ReceivedDecember
2010; accepted February 2011
Abstract.Multi-label Classification problems are omnipresent.ML-KNN
is a multi-label lazy learning approach. The feature of high dimensionsand redundancy of the dataset is not considered by ML-KNN, so the classificationresult is hard to be improved further. Principal Component Analysis (PCA) is apopular and powerful technique
for feature extraction and dimensionalityreduction. In this paper, a novel multi-label classification algorithm based onPCA and ML-KNN (named PCA-ML-KNN) is proposed. Experiments on two benchmarkdatasets for multi-label learning show that, PCA processes the
dataset in anoptimized manner, eliminating the need of huge dataset for ML-KNN, andPCA-ML-KNN achieves better performance than ML-KNN.
Keywords:Multi-label classification, ML-KNN, Dimension reduction,Feature
extraction, Principal Component Analysis (PCA)
1.Introduction.Multi-label classification is arousing more and more attention and is increasingly required by many applications in
widefields, such as protein function classification, music categorization and semantic scene classification. During the past decade, several multi-label learning algorithms have been proposed, like the multi-label decision tree based learning algorithm [1,2]
, the support vector machine based multi-labellearning algorithm [3], the ML-KNN algorithm [4,5], etc.. ML-KNN is derived from the traditional K-nearest neighbor (KNN) algorithm and is presented by Zhang and others. Several empirical studies demonstrated that
the dataset for Multi-label classification is bulky, and has the characteristic of high dimensions and redundancy. These features pose a serious obstac1e to any attempt to extract pertinent information, thus make it difficult to improve the multi-label classification
algorithms.
PCA is a technique of data analysis [6]. In fact it is a mathematical procedure that uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of uncorrelated variables called principal components. The most important application of PCA isto simplify the original data. PCA can effectively identify the most important elements in the dataset, eliminate noise
and redundancy. Another advantage ofPCA is that it has no parameter restrictions, and can be applied to variousfields.
In this paper, a novel multi-label classification algorithm based on PCA and ML-KNN is proposed for improving the classification performance. PCA is adopted to
reduce dataset dimensionality and noise. This isthe first procedure for the classification. Then ML-KNN method is used for rest processing. To verify the effectiveness of PCA-ML-KNN, two datasets, e.g. Sceneand Enron are used, and the experiments report excellent
performance.
*Corresponding
author
版权声明:本文博主原创文章,博客,未经同意不得转载。
A Novel Multi-label Classification Based on PCA and ML-KNN的更多相关文章
- Multi label 多标签分类问题(Pytorch,TensorFlow,Caffe)
适用场景:一个输入对应多个label,或输入类别间不互斥 调用函数: 1. Pytorch使用torch.nn.BCEloss 2. Tensorflow使用tf.losses.sigmoid_cro ...
- [Tensorflow] Cookbook - Object Classification based on CIFAR-10
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...
- 《Benign and maligenant breast tumors classification based on region growing and CNN segmentation》翻译阅读与理解
注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! 另:欢 ...
- Automatic Annotation of Airborne Images by Label Propagation Based on a Bayesian-CRF Model
贝叶斯+全连接条件场,无人机和航片数据,通过标注航片数据自动生成无人机标注数据,具体不懂
- Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism
借鉴了DenseNet的思想,用了空洞卷积而不是池化,使得特征图不会缩小,因此每个dense连接都可以直接连,最后一层是包括了前面所有层的特征图. 此外还加入了channel-wise的注意力,对每个 ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- ECCV 2014 Results (16 Jun, 2014) 结果已出
Accepted Papers Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...
- A great tutorial with Jupyter notebook for ML beginners
An end to end implementation of a Machine Learning pipeline SPANDAN MADAN Visual Computing Group, Ha ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
随机推荐
- cocos2d-x2.2.5 + cocos2d-x3.2鸟跳便宜源代码“开源”
尊重开发人员的劳动成果,转载请注明From郝萌主 游戏简单介绍: 贱鸟跳跳,贱贱的小鸟这次遇上大问题了.被它整蛊过的同类都在找它的麻烦,如今我们赶紧到游戏中帮帮它吧!左右手互撸,合理操控.获得高分,打 ...
- Java设置的读书笔记和集合框架Collection API
一个.CollectionAPI 集合是一系列对象的聚集(Collection). 集合在程序设计中是一种重要的数据接口.Java中提供了有关集合的类库称为CollectionAPI. 集合实际上是用 ...
- Help Johnny-(类似杭电acm3568题)
Help Johnny(类似杭电3568题) Description Poor Johnny is so busy this term. His tutor threw lots of hard pr ...
- Session为空的一种原因
在维护一份比较老的代码,想改为ajax调用,然后就添加了一个一般处理程序文件,也就是以.ashx结尾的文件,一切都正常,但发现session一直为空,很奇怪 基本的代码如下: public class ...
- JQuery插件datatables相关api
学习可参考:http://www.guoxk.com/node/jquery-datatables http://yuemeiqing2008-163-com.iteye.com/blog/20069 ...
- js:进一步关闭(范围:下一个)
function fn1(){ //创建一个数组 var fns = new Array(); //i这个变量是保存在fn1这个作用域中 for(var i=0;i<10;i++ ...
- Android圆弧形ListView的实现
本文带大家来实现ListView的圆弧形的分布排列,原理非常easy,就是依据ListView的每个Item的高度来对每个item进行偏移. 首先自己定义一个LinearLayout,这是ListVi ...
- Jndi使用好处,与简单实例【JBOSS】
JNDI是 Java 命名与目录接口(Java Naming and Directory Interface),在J2EE规范中是重要的规范之一,不少专家认为,没有透彻理解JNDI的意义和作用,就没有 ...
- php集成环境
apache+php+mysql是常见php环境,在windows下也称为WAMP,对于初学者自选版本搭建总是会遇到一些麻烦,下面是收集到的一些集成环境安装: 1.AppServ (推荐,简洁精简) ...
- java + memcached安装
一:安装 (临时获取上手windows实验) 1.下载memcached.exe , 上F:\memcached\ 下 2.在CMD在输入 "F:\memcached\memcached.e ...