A Novel Multi-label Classification Based on PCA and ML-KNN
|
A Novel Multi-label Classification Based on PCA and ML-KNN
Di Wu, Dapeng Zhang, Fengqin Yang, Xu Zhou and Tieli Sun*
School of Computer
Science and Information Technology
Northeast Normal University
Changchun, 130117, P. R. China
suntl@nenu.edu.cn
ReceivedDecember
2010; accepted February 2011
Abstract.Multi-label Classification problems are omnipresent.ML-KNN
is a multi-label lazy learning approach. The feature of high dimensionsand redundancy of the dataset is not considered by ML-KNN, so the classificationresult is hard to be improved further. Principal Component Analysis (PCA) is apopular and powerful technique
for feature extraction and dimensionalityreduction. In this paper, a novel multi-label classification algorithm based onPCA and ML-KNN (named PCA-ML-KNN) is proposed. Experiments on two benchmarkdatasets for multi-label learning show that, PCA processes the
dataset in anoptimized manner, eliminating the need of huge dataset for ML-KNN, andPCA-ML-KNN achieves better performance than ML-KNN.
Keywords:Multi-label classification, ML-KNN, Dimension reduction,Feature
extraction, Principal Component Analysis (PCA)
1.Introduction.Multi-label classification is arousing more and more attention and is increasingly required by many applications in
widefields, such as protein function classification, music categorization and semantic scene classification. During the past decade, several multi-label learning algorithms have been proposed, like the multi-label decision tree based learning algorithm [1,2]
, the support vector machine based multi-labellearning algorithm [3], the ML-KNN algorithm [4,5], etc.. ML-KNN is derived from the traditional K-nearest neighbor (KNN) algorithm and is presented by Zhang and others. Several empirical studies demonstrated that
the dataset for Multi-label classification is bulky, and has the characteristic of high dimensions and redundancy. These features pose a serious obstac1e to any attempt to extract pertinent information, thus make it difficult to improve the multi-label classification
algorithms.
PCA is a technique of data analysis [6]. In fact it is a mathematical procedure that uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of uncorrelated variables called principal components. The most important application of PCA isto simplify the original data. PCA can effectively identify the most important elements in the dataset, eliminate noise
and redundancy. Another advantage ofPCA is that it has no parameter restrictions, and can be applied to variousfields.
In this paper, a novel multi-label classification algorithm based on PCA and ML-KNN is proposed for improving the classification performance. PCA is adopted to
reduce dataset dimensionality and noise. This isthe first procedure for the classification. Then ML-KNN method is used for rest processing. To verify the effectiveness of PCA-ML-KNN, two datasets, e.g. Sceneand Enron are used, and the experiments report excellent
performance.
*Corresponding
author
版权声明:本文博主原创文章,博客,未经同意不得转载。
A Novel Multi-label Classification Based on PCA and ML-KNN的更多相关文章
- Multi label 多标签分类问题(Pytorch,TensorFlow,Caffe)
适用场景:一个输入对应多个label,或输入类别间不互斥 调用函数: 1. Pytorch使用torch.nn.BCEloss 2. Tensorflow使用tf.losses.sigmoid_cro ...
- [Tensorflow] Cookbook - Object Classification based on CIFAR-10
Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...
- 《Benign and maligenant breast tumors classification based on region growing and CNN segmentation》翻译阅读与理解
注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! 另:欢 ...
- Automatic Annotation of Airborne Images by Label Propagation Based on a Bayesian-CRF Model
贝叶斯+全连接条件场,无人机和航片数据,通过标注航片数据自动生成无人机标注数据,具体不懂
- Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism
借鉴了DenseNet的思想,用了空洞卷积而不是池化,使得特征图不会缩小,因此每个dense连接都可以直接连,最后一层是包括了前面所有层的特征图. 此外还加入了channel-wise的注意力,对每个 ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- ECCV 2014 Results (16 Jun, 2014) 结果已出
Accepted Papers Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...
- A great tutorial with Jupyter notebook for ML beginners
An end to end implementation of a Machine Learning pipeline SPANDAN MADAN Visual Computing Group, Ha ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
随机推荐
- DatePicker的使用
activity_main.xml: <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android ...
- python语言学习8——字符串和编码
Unicode编码 计算机只能处理数字,如果要处理文本,就必须把文本转化为数字才能处理 有许多编码标准,但是不同的编码标准有时候会混乱,所以Unicode应运而生 Unicode把所有语言统一到一套编 ...
- mongodb分页优化
现在参与一个项目的开发,需要用java查询mongodb数据库,在这里分页用的skip sort 和limit结合,查询语句如下(已经在相关字段建立索引) DBCursor cursor = coll ...
- HDU 4790 Just Random 数学
链接:pid=4790">http://acm.hdu.edu.cn/showproblem.php?pid=4790 意:从[a.b]中随机找出一个数字x,从[c.d]中随机找出一个 ...
- 最牛B的编程套路
最近,我大量阅读了Steve Yegge的文章.其中有一篇叫“Practicing Programming”(练习编程),写成于2005年,读后令我惊讶不已: 与你所相信的恰恰相反,单纯地每天埋头于工 ...
- 关于LIST.Select().ToList()慢的问题
var sendlist = emailList.Select(email => new MailMessage { MailServer = SMTPServer, UserName = Se ...
- 打开或导入项目,从脱机 Outlook 数据文件 (.ost)
打开或导入项目,从脱机 Outlook 数据文件 (.ost) Microsoft Outlook 2010 doesn\rquote t 支持手动打开或导入项目,从一个 脱机 Outlook 数据文 ...
- 【LaTeX排版】LaTeX论文排版<三>
A picture is worth a thousand words(一图胜千言).图在论文中的重要性不言而喻,本文主要解说图的制作与插入. 1.图像的插入 图像能够分为两大类:位图和向量图 ...
- Uva11464 开关问题
给一个n×n的01矩阵,你的任务是将尽量少的0变成1,是的每个元素的上下左右的位置(如果存在的话)的之和均为偶数.1<=n<=15. 如果暴力整个矩阵,那么时间复杂度是O(2^(n*n)) ...
- Windows Phone开发(43):推送通知第一集——Toast推送
原文:Windows Phone开发(43):推送通知第一集--Toast推送 好像有好几天没更新了,抱歉抱歉,最近"光荣"地失业,先是忙于寻找新去处,唉,暂时没有下文.而后又有一 ...