ICIC Express Letters                          ICIC
International ⓒ2010 ISSN 1881-803X

Volume4, Number5,
October 2010                                                pp.1–6

 

A Novel Multi-label Classification Based on PCA and ML-KNN

Di Wu, Dapeng Zhang, Fengqin Yang, Xu Zhou and Tieli Sun*

School of Computer
Science and Information Technology

Northeast Normal University

Changchun, 130117, P. R. China

suntl@nenu.edu.cn

ReceivedDecember
2010; accepted February 2011

Abstract.Multi-label Classification problems are omnipresent.ML-KNN
is a multi-label lazy learning approach. The feature of high dimensionsand redundancy of the dataset is not considered by ML-KNN, so the classificationresult is hard to be improved further. Principal Component Analysis (PCA) is apopular and powerful technique
for feature extraction and dimensionalityreduction. In this paper, a novel multi-label classification algorithm based onPCA and ML-KNN (named PCA-ML-KNN) is proposed. Experiments on two benchmarkdatasets for multi-label learning show that, PCA processes the
dataset in anoptimized manner, eliminating the need of huge dataset for ML-KNN, andPCA-ML-KNN achieves better performance than ML-KNN.

Keywords:Multi-label classification, ML-KNN, Dimension reduction,Feature
extraction, Principal Component Analysis (PCA)

1.Introduction.Multi-label classification is arousing more and more attention and is increasingly required by many applications in
widefields, such as protein function classification, music categorization and semantic scene classification. During the past decade, several multi-label learning algorithms have been proposed, like the multi-label decision tree based learning algorithm [1,2]
, the support vector machine based multi-labellearning algorithm [3], the ML-KNN algorithm [4,5], etc.. ML-KNN is derived from the traditional K-nearest neighbor (KNN) algorithm and is presented by Zhang and others. Several empirical studies demonstrated that
the dataset for Multi-label classification is bulky, and has the characteristic of high dimensions and redundancy. These features pose a serious obstac1e to any attempt to extract pertinent information, thus make it difficult to improve the multi-label classification
algorithms.

PCA is a technique of data analysis [6]. In fact it is a mathematical procedure that uses an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of uncorrelated variables called principal components. The most important application of PCA isto simplify the original data. PCA can effectively identify the most important elements in the dataset, eliminate noise
and redundancy. Another advantage ofPCA is that it has no parameter restrictions, and can be applied to variousfields.

In this paper, a novel multi-label classification algorithm based on PCA and ML-KNN is proposed for improving the classification performance. PCA is adopted to
reduce dataset dimensionality and noise. This isthe first procedure for the classification. Then ML-KNN method is used for rest processing. To verify the effectiveness of PCA-ML-KNN, two datasets, e.g. Sceneand Enron are used, and the experiments report excellent
performance.

......


*Corresponding
author

版权声明:本文博主原创文章,博客,未经同意不得转载。

A Novel Multi-label Classification Based on PCA and ML-KNN的更多相关文章

  1. Multi label 多标签分类问题(Pytorch,TensorFlow,Caffe)

    适用场景:一个输入对应多个label,或输入类别间不互斥 调用函数: 1. Pytorch使用torch.nn.BCEloss 2. Tensorflow使用tf.losses.sigmoid_cro ...

  2. [Tensorflow] Cookbook - Object Classification based on CIFAR-10

    Convolutional Neural Networks (CNNs) are responsible for the major breakthroughs in image recognitio ...

  3. 《Benign and maligenant breast tumors classification based on region growing and CNN segmentation》翻译阅读与理解

    注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! 另:欢 ...

  4. Automatic Annotation of Airborne Images by Label Propagation Based on a Bayesian-CRF Model

    贝叶斯+全连接条件场,无人机和航片数据,通过标注航片数据自动生成无人机标注数据,具体不懂

  5. Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism

    借鉴了DenseNet的思想,用了空洞卷积而不是池化,使得特征图不会缩小,因此每个dense连接都可以直接连,最后一层是包括了前面所有层的特征图. 此外还加入了channel-wise的注意力,对每个 ...

  6. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  7. ECCV 2014 Results (16 Jun, 2014) 结果已出

    Accepted Papers     Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...

  8. A great tutorial with Jupyter notebook for ML beginners

    An end to end implementation of a Machine Learning pipeline SPANDAN MADAN Visual Computing Group, Ha ...

  9. [C2P3] Andrew Ng - Machine Learning

    ##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...

随机推荐

  1. 【STL】关联容器 — hash_set

    容器hash_set是以hash table为底层机制的,差点儿所有的操作都是转调用hash table提供的接口.因为插入无法存储同样的键值,所以hash_set的插入操作所有都使用hash tab ...

  2. Android清理设备内存具体完整演示样例(一)

    MainActivity例如以下: package come.on; import android.app.Activity; import android.content.Context; impo ...

  3. 快速入门github的方法

    Sometimes you just need a little help. ps:官方的帮助,原汁原味的帮助!强烈推荐 https://help.github.com/ Pro Git Book C ...

  4. SynchronousQueue、LinkedBlockingQueue、ArrayBlockingQueue性能测试

    SynchronousQueue.LinkedBlockingQueue.ArrayBlockingQueue性能测试 JDK6对SynchronousQueue做了性能优化,避免对竞争资源加锁,所以 ...

  5. C++实现链栈的基本操作

    之前对顺序栈写了基本操作,认为有必要也动手练练栈的链表实现. 对于链栈,一般不会出现栈满的情况. 链栈头文件定义例如以下: #ifndef CSTOCK_H_ #define CSTOCK_H_ ty ...

  6. CSDN博客的一些问题(友好的吐槽)--后记,有一点点改进

    近期,CSDN博客真的非常不稳定,时常会出现503错误. 昨天.我发现自己的博客的訪问量仅仅有4万多,今天最终发现它变回原来的6万多了. 我写博客不是为了这个訪问量,可是,CSDN这点使用问题啦. 或 ...

  7. hdu 4685 Prince and Princess(匈牙利算法 连通分量)

    看了别人的题解.须要用到匈牙利算法的强连通算法 #include<cstdio> #include<algorithm> #include<vector> #pra ...

  8. Linux+Apache+Mysql+Php

    CentOS 6.3下源码安装LAMP(Linux+Apache+Mysql+Php)环境 一.简介 什么是LAMP    LAMP是一种Web网络应用和开发环境,是Linux, Apache, My ...

  9. Spring IOC及AOP学习总结

    一.Spring IOC体系学习总结: Spring中有两个容器体系,一类是BeanFactory.还有一类是ApplicationContext.BeanFactory提供了基础的容器功能.Appl ...

  10. [置顶] Guava学习之Multimap

    相信大家对Java中的Map类及其之类有大致的了解,Map类是以键值对的形式来存储元素(Key->Value),但是熟悉Map的人都知道,Map中存储的Key是唯一的.什么意思呢?就是假如我们有 ...