epoll精髓 - 彭帅 - 博客园 - Google Chrome (2013/10/11 20:47:52)

epoll精髓

在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。
相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linux/posix_types.h头文件有这样的声明:
#define __FD_SETSIZE    1024
表示select最多同时监听1024个fd,当然,可以通过修改头文件再重编译内核来扩大这个数目,但这似乎并不治本。

epoll的接口非常简单,一共就三个函数:
1. int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。

2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
struct epoll_event {
  __uint32_t events;  /* Epoll events */
  epoll_data_t data;  /* User data variable */
};

events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里

3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。

--------------------------------------------------------------------------------------------

从man手册中,得到ET和LT的具体描述如下

EPOLL事件有两种模型:
Edge Triggered (ET)
Level Triggered (LT)

假如有这样一个例子:
1. 我们已经把一个用来从管道中读取数据的文件句柄(RFD)添加到epoll描述符
2. 这个时候从管道的另一端被写入了2KB的数据
3. 调用epoll_wait(2),并且它会返回RFD,说明它已经准备好读取操作
4. 然后我们读取了1KB的数据
5. 调用epoll_wait(2)......

Edge Triggered 工作模式:
如果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET 工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍在存在于文件输入缓冲区内的剩余数据。在上面的例子中,会有一个事件产生在RFD句柄上,因为在第2步执行了一个写操作,然后,事件将会在第3步被销毁。因为第4步的读取操作没有读空文件输入缓冲区内的数据,因此我们在第5步调用 epoll_wait(2)完成后,是否挂起是不确定的。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。最好以下面的方式调用ET模式的epoll接口,在后面会介绍避免可能的缺陷。
   i    基于非阻塞文件句柄
   ii   只有当read(2)或者write(2)返回EAGAIN时才需要挂起,等待。但这并不是说每次read()时都需要循环读,直到读到产生一个EAGAIN才认为此次事件处理完成,当read()返回的读到的数据长度小于请求的数据长度时,就可以确定此时缓冲中已没有数据了,也就可以认为此事读事件已处理完成。

Level Triggered 工作模式
相反的,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll(2),并且无论后面的数据是否被使用,因此他们具有同样的职能。因为即使使用ET模式的epoll,在收到多个chunk的数据的时候仍然会产生多个事件。调用者可以设定EPOLLONESHOT标志,在 epoll_wait(2)收到事件后epoll会与事件关联的文件句柄从epoll描述符中禁止掉。因此当EPOLLONESHOT设定后,使用带有 EPOLL_CTL_MOD标志的epoll_ctl(2)处理文件句柄就成为调用者必须作的事情。

然后详细解释ET, LT:

LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表.

ET(edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认(这句话不理解)。

在许多测试中我们会看到如果没有大量的idle -connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当我们遇到大量的idle- connection(例如WAN环境中存在大量的慢速连接),就会发现epoll的效率大大高于select/poll。(未测试)

另外,当使用epoll的ET模型来工作时,当产生了一个EPOLLIN事件后,
读数据的时候需要考虑的是当recv()返回的大小如果等于请求的大小,那么很有可能是缓冲区还有数据未读完,也意味着该次事件还没有处理完,所以还需要再次读取:
while(rs)
{
  buflen = recv(activeevents[i].data.fd, buf, sizeof(buf), 0);
  if(buflen < 0)
  {
    // 由于是非阻塞的模式,所以当errno为EAGAIN时,表示当前缓冲区已无数据可读
    // 在这里就当作是该次事件已处理处.
    if(errno == EAGAIN)
     break;
    else
     return;
   }
   else if(buflen == 0)
   {
     // 这里表示对端的socket已正常关闭.
   }
   if(buflen == sizeof(buf)
     rs = 1;   // 需要再次读取
   else
     rs = 0;
}

还有,假如发送端流量大于接收端的流量(意思是epoll所在的程序读比转发的socket要快),由于是非阻塞的socket,那么send()函数虽然返回,但实际缓冲区的数据并未真正发给接收端,这样不断的读和发,当缓冲区满后会产生EAGAIN错误(参考man send),同时,不理会这次请求发送的数据.所以,需要封装socket_send()的函数用来处理这种情况,该函数会尽量将数据写完再返回,返回-1表示出错。在socket_send()内部,当写缓冲已满(send()返回-1,且errno为EAGAIN),那么会等待后再重试.这种方式并不很完美,在理论上可能会长时间的阻塞在socket_send()内部,但暂没有更好的办法.

ssize_t socket_send(int sockfd, const char* buffer, size_t buflen)
{
  ssize_t tmp;
  size_t total = buflen;
  const char *p = buffer;

  while(1)
  {
    tmp = send(sockfd, p, total, 0);
    if(tmp < 0)
    {
      // 当send收到信号时,可以继续写,但这里返回-1.
      if(errno == EINTR)
        return -1;

      // 当socket是非阻塞时,如返回此错误,表示写缓冲队列已满,
      // 在这里做延时后再重试.
      if(errno == EAGAIN)
      {
        usleep(1000);
        continue;
      }

      return -1;
    }

    if((size_t)tmp == total)
      return buflen;

    total -= tmp;
    p += tmp;
  }

  return tmp;
}

Linux网络编程一步一步学-epoll同时处理海量连接的代码 - blade2001的专栏 - 博客频道 - CSDN.NET - Google Chrome (2013/10/11 20:34:43)

分类: 网络/通信2007-06-10 13:13 1614人阅读 评论(0) 收藏 举报
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <openssl/ssl.h>
#include <openssl/err.h>
#include <fcntl.h>
#include <sys/epoll.h>
#include <sys/time.h>
#include <sys/resource.h>

#define MAXBUF 1024
#define MAXEPOLLSIZE 10000

/*
setnonblocking - 设置句柄为非阻塞方式
*/
int setnonblocking(int sockfd)
{
    if (fcntl(sockfd, F_SETFL, fcntl(sockfd, F_GETFD, 0)|O_NONBLOCK) == -1) {
        return -1;
    }
    return 0;
}

/*
handle_message - 处理每个 socket 上的消息收发
*/
int handle_message(int new_fd)
{
    char buf[MAXBUF + 1];
    int len;
    /* 开始处理每个新连接上的数据收发 */
    bzero(buf, MAXBUF + 1);
    /* 接收客户端的消息 */
    len = recv(new_fd, buf, MAXBUF, 0);
    if (len > 0)
        printf
            ("%d接收消息成功:'%s',共%d个字节的数据/n",
             new_fd, buf, len);
    else {
        if (len < 0)
            printf
                ("消息接收失败!错误代码是%d,错误信息是'%s'/n",
                 errno, strerror(errno));
        close(new_fd);
        return -1;
    }
    /* 处理每个新连接上的数据收发结束 */
    return len;
}
/************关于本文档********************************************
*filename: epoll-server.c
*purpose: 演示epoll处理海量socket连接的方法
*wrote by: zhoulifa(zhoulifa@163.com) 周立发(http://zhoulifa.bokee.com)
Linux爱好者 Linux知识传播者 SOHO族 开发者 最擅长C语言
*date time:2007-01-31 21:00
*Note: 任何人可以任意复制代码并运用这些文档,当然包括你的商业用途
* 但请遵循GPL
*Thanks to:Google
*Hope:希望越来越多的人贡献自己的力量,为科学技术发展出力
* 科技站在巨人的肩膀上进步更快!感谢有开源前辈的贡献!
*********************************************************************/
int main(int argc, char **argv)
{
    int listener, new_fd, kdpfd, nfds, n, ret, curfds;
    socklen_t len;
    struct sockaddr_in my_addr, their_addr;
    unsigned int myport, lisnum;
    struct epoll_event ev;
    struct epoll_event events[MAXEPOLLSIZE];
    struct rlimit rt;

    if (argv[1])
        myport = atoi(argv[1]);
    else
        myport = 7838;

    if (argv[2])
        lisnum = atoi(argv[2]);
    else
        lisnum = 2;

    /* 设置每个进程允许打开的最大文件数 */
    rt.rlim_max = rt.rlim_cur = MAXEPOLLSIZE;
    if (setrlimit(RLIMIT_NOFILE, &rt) == -1) {
        perror("setrlimit");
        exit(1);
    }
    else printf("设置系统资源参数成功!/n");

    /* 开启 socket 监听 */
    if ((listener = socket(PF_INET, SOCK_STREAM, 0)) == -1) {
        perror("socket");
        exit(1);
    } else
        printf("socket 创建成功!/n");

    setnonblocking(listener);

    bzero(&my_addr, sizeof(my_addr));
    my_addr.sin_family = PF_INET;
    my_addr.sin_port = htons(myport);
    if (argv[3])
        my_addr.sin_addr.s_addr = inet_addr(argv[3]);
    else
        my_addr.sin_addr.s_addr = INADDR_ANY;

    if (bind
        (listener, (struct sockaddr *) &my_addr, sizeof(struct sockaddr))
        == -1) {
        perror("bind");
        exit(1);
    } else
        printf("IP 地址和端口绑定成功/n");

    if (listen(listener, lisnum) == -1) {
        perror("listen");
        exit(1);
    } else
        printf("开启服务成功!/n");

    /* 创建 epoll 句柄,把监听 socket 加入到 epoll 集合里 */
    kdpfd = epoll_create(MAXEPOLLSIZE);
    len = sizeof(struct sockaddr_in);
    ev.events = EPOLLIN | EPOLLET;
    ev.data.fd = listener;
    if (epoll_ctl(kdpfd, EPOLL_CTL_ADD, listener, &ev) < 0) {
        fprintf(stderr, "epoll set insertion error: fd=%d/n", listener);
        return -1;
    } else
        printf("监听 socket 加入 epoll 成功!/n");
    curfds = 1;
    while (1) {
        /* 等待有事件发生 */
        nfds = epoll_wait(kdpfd, events, curfds, -1);
        if (nfds == -1) {
            perror("epoll_wait");
            break;
        }
        /* 处理所有事件 */
        for (n = 0; n < nfds; ++n) {
            if (events[n].data.fd == listener) {
                new_fd = accept(listener, (struct sockaddr *) &their_addr,
                                &len);
                if (new_fd < 0) {
                    perror("accept");
                    continue;
                } else
                    printf("有连接来自于: %d:%d, 分配的 socket 为:%d/n", inet_ntoa(their_addr.sin_addr), ntohs(their_addr.sin_port), new_fd);

                setnonblocking(new_fd);
                ev.events = EPOLLIN | EPOLLET;
                ev.data.fd = new_fd;
                if (epoll_ctl(kdpfd, EPOLL_CTL_ADD, new_fd, &ev) < 0) {
                    fprintf(stderr, "把 socket '%d' 加入 epoll 失败!%s/n",
                            new_fd, strerror(errno));
                    return -1;
                }
                curfds++;
            } else {
                ret = handle_message(events[n].data.fd);
                if (ret < 1 && errno != 11) {
                    epoll_ctl(kdpfd, EPOLL_CTL_DEL, events[n].data.fd,
                              &ev);
                    curfds--;
                }
            }
        }
    }
    close(listener);
    return 0;
}

编译此程序用命令:
gcc -Wall epoll-server.c -o server

运行此程序需要具有管理员权限!

sudo ./server 7838 1

通过测试这一个服务器可能同时处理10000 -3 = 9997 个连接!

如果这是一个在线服务系统,那么它可以支持9997人同时在线,比如游戏、聊天等。

笔记整理--socket_server的更多相关文章

  1. python学习笔记整理——字典

    python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...

  2. 从0开始学Swift笔记整理(五)

    这是跟在上一篇博文后续内容: --Core Foundation框架 Core Foundation框架是苹果公司提供一套概念来源于Foundation框架,编程接口面向C语言风格的API.虽然在Sw ...

  3. Deep Learning(深度学习)学习笔记整理系列之(五)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  4. 学习ReactNative笔记整理一___JavaScript基础

    学习ReactNative笔记整理一___JavaScript基础 ★★★笔记时间- 2017-1-9 ★★★ 前言: 现在跨平台是一个趋势,这样可以减少开发和维护的成本.第一次看是看的ReactNa ...

  5. Deep Learning(深度学习)学习笔记整理系列之(八)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  6. Deep Learning(深度学习)学习笔记整理系列之(七)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  7. Deep Learning(深度学习)学习笔记整理系列之(六)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  8. Deep Learning(深度学习)学习笔记整理系列之(四)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  9. Deep Learning(深度学习)学习笔记整理系列之(三)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

随机推荐

  1. drawable文件夹详解

    QVGA使用ldpi,虽然有不同尺寸,但都是120dpi左右:HVGA同理:如下图: -finger    用于触摸屏的设备 -hdpi    近似于240dpi的高级显示密度的屏幕 -mdpi    ...

  2. 提升html5的性能体验系列之二列表流畅滑动

    App的顶部一般有titlebar,下面是list.常见的一个需求是要在list滚动时,titlebar不动.这个简单的需求,实现起来其实并不简单. 在普通web上的做法是使用div的滚动条,把lis ...

  3. 一种快速查询多点DS18B20温度的方法(转)

    源:http://hi.baidu.com/james_xiao/item/79b961c90623093e45941623 一种快速查询多点DS18B20温度的方法 引言      为了满足实时性要 ...

  4. jsp的Get 与 SET的区别

    getParameter:获取前个页面的数据,此方法获取的数据是从前台提交过来的 getAttribute:是获取setAttribute存储的数据 ========================= ...

  5. highcharts 去掉打印和链接

    1)去掉或更改图片右下角的链接 在highcharts.js文件中搜索credits字符串,找到如下的字符串, enabled:设置是否显示链接 text:设置链接显示的名称 href:设置链接的ur ...

  6. 高橋君とホテル / Tak and Hotels

    高橋君とホテル / Tak and Hotels Time limit : 3sec / Stack limit : 256MB / Memory limit : 256MB Score : 700  ...

  7. iOS WebView的用法

    一.UIWebView 可以加载和显示某个URL的网页,也可以显示基于HTML的本地网页或部分网页: a. 加载 URL WebView = [[UIWebView alloc] initWithFr ...

  8. Eclipse 快捷键使用

    ctrl+shift+T //查找当前工程下的某个类   实时提示 ctrl+shift+R//查找当前工程下的某个文件   实时提示 ctrl+/添加注释 Ctrl+1 快速修复(最经典的快捷键,就 ...

  9. CDOJ 1272 Final Pan's prime numbers

    有些问题,不做实践与猜测,可能一辈子也想不出答案,例如这题. #include<stdio.h> #include<math.h> long long x; int main( ...

  10. 模块的_name_

    模块的__name__每个模块都有一个名称,在模块中可以通过语句来找出模块的名称.这在一个场合特别有用——就如前面所提到的,当一个模块被第一次输入的时候,这个模块的主块将被运行.假如我们只想在程序本身 ...