剑指offer青蛙跳台阶问题
public static int f(int n) {
//参数合法性验证
if (n < 1) {
System.out.println("参数必须大于1!");
System.exit(-1);
}
if (n == 1 || n == 2) return 1;
else return f(n - 1) + f(n - 2);
}
//非递归方式
public static int fx(int n) {
//参数合法性验证
if (n < 1) {
System.out.println("参数必须大于1!");
System.exit(-1);
}
//n为1或2时候直接返回值
if (n< 2) return 1;
//n>2时候循环求值
int res = 0;
int a = 1;
int b = 1;
for (int i = 2; i <= n; i++) {
res = a + b;
a = b;
b = res;
}
return res;
}
当n = 1 时, 只有一种跳法,即1阶跳:Fib(1) = 1;
当n = 2 时, 有两种跳的方式,一阶跳和二阶跳:Fib(2) = Fib(1) + Fib(0) = 2;
当n = 3 时,有三种跳的方式,第一次跳出一阶后,后面还有Fib(3-1)中跳法; 第一次跳出二阶后,后面还有Fib(3-2)中跳法;第一次跳出三阶后,后面还有Fib(3-3)中跳法
Fib(3) = Fib(2) + Fib(1)+Fib(0)=4;
当n = n 时,共有n种跳的方式,第一次跳出一阶后,后面还有Fib(n-1)中跳法; 第一次跳出二阶后,后面还有Fib(n-2)中跳法..........................第一次跳出n阶后, 后面还有 Fib(n-n)中跳法.
Fib(n) = Fib(n-1)+Fib(n-2)+Fib(n-3)+..........+Fib(n-n)=Fib(0)+Fib(1)+Fib(2)+.......+Fib(n-1)
又因为Fib(n-1)=Fib(0)+Fib(1)+Fib(2)+.......+Fib(n-2)
递归等式如下:

if(number<2)return 1;
//n>2时候循环求值
int res = 0;
int a = 1;
for (int i = 2; i <= number; i++) {
res = 2*a;
a= res;
}
return res;
剑指offer青蛙跳台阶问题的更多相关文章
- 《剑指offer》 跳台阶
本题来自<剑指offer> 跳台阶 题目1: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: 同上一篇. C ...
- 剑指offer:跳台阶
目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). ...
- 剑指offer:跳台阶问题
基础跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路 这道题就是斐波那契数列的变形问法,因为跳上第N个台阶 ...
- Go语言实现:【剑指offer】跳台阶
该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 1阶:共1种跳法: 2阶 ...
- 剑指offer例题——跳台阶、变态跳台阶
题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...
- 【牛客网-剑指offer】跳台阶
题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 考点: 递归和循环 思路: 1)利用二叉树,左孩子为跳一级,右孩子为跳两 ...
- 剑指Offer 变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 其实就是斐波那契数列问题. 假设f(n)是n个台阶跳的次数. f(1) = ...
- 剑指offer——变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 问题分析 由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳 ...
- 剑指OFFER之跳台阶(九度OJ1388)
题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1<=n< ...
随机推荐
- ITest
渗透测试入门 我很简单,请不要欺负我 网站综合渗透实验: 真的很简单: 你是会员吗: 2015中国网络安全大赛 一.代码执行: 同DZ漏洞全家桶中的"又见DZ,我能那你怎么办". ...
- OGG中断后,重新同步操作
模拟一下goldengata中断后,重新同步操作: 1.关掉源端抽取进程 GGSCI (20081122-2105) 15> info all Program Status Group Lag ...
- STM32笔记总结
1.命名规则 2.#pragma pack使用 #pragma pack 1保证字节对齐 置结构体的边界对齐为1个字节,也就是所有数据在内存中是连续存储的struct s{ char ch; ...
- Node.js:模块
概要:本篇博客主要介绍node.js的模块 1.创建模块 在node.js中创建一个模块非常简单,因为一个文件就是一个模块.我们只需要明白如何从其他文件中获取这个模块.Node.js提供了 expor ...
- tomcat Server.xml Context配置问题
有时候需要在tomcat里面做特殊的配置,来进行访问: 例如你的程序 名字是hello端口是80 这时候你要访问你的程序 就要用 localhost/hello 来访问了. 但是怎么直接用 loca ...
- aws部署从无到有(二)windows管理aws
1 AMI正常启动后会进入下面页面 2 远程链接点击如何连接至您的 Linux 实例进入下载页 Windows下使用 PuTTY连接到 Linux 实例 http://www.chiark.green ...
- ES6 相关资料
Configuring Babel 6 Setting up ES6
- 10.hibernate缓存机制详细分析(转自xiaoluo501395377)
hibernate缓存机制详细分析 在本篇随笔里将会分析一下hibernate的缓存机制,包括一级缓存(session级别).二级缓存(sessionFactory级别)以及查询缓存,当然还要讨论 ...
- CevaEclipse - 编译器attribute扩展
1.函数与变量的 Section Attribute void foobar (void) __attribute__ ((section (".CSECT mmm"))); vo ...
- Java "==" 和 "equals" 和 "" 问题
//equals()方法出现的问题 String a="testd"; String b="testd"; String c=new String(" ...