知道是数独问题后犹豫了一下要不要做(好像很难的样纸==。),用dfs并剪枝,是一道挺规范的搜索题。

先介绍以下数独吧~

数独(Sudoku)是一种运用纸、笔进行演算的逻辑游戏。玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格 的数字,并满足每一行、每一列、每一个粗线宫内的数字均含1-9,不重复。 每一道合格的数独谜题都有且仅有唯一答案,推理方法也以此为基础,任何无解或多解的题目都是不合格的。

有一种求解数独问题的方案是“候选数字法”,就是在待填充的格子中填写不会造成行重复、列重复、块重复的数字,有的时候存在多个这样的数字,那么我们可以随机选取一个,如果待填充的格子中填写任何一个数字都会造成某种重复的发生,则说明这个问题没有解,也就是这不是一个数独问题。

想要更加深入了解的同学可以点此链接:http://www.cnblogs.com/grenet/archive/2013/06/19/3138654.html

下面来说说POJ的这道题吧!

题目大意:

给你一个数独,让你填数:

1.每行的九个数字互不相同;

2.每列的九个数字各不相同;

3.被分成的3*3的小矩阵中的九个数字互不相同;

输出完成后的数表,若不能满足上述条件,则输出原图。

解题思路:

DFS。。失败了回溯~

从小优女神那里看到的存储方式(觉得很是方便呀!)

用三个数组进行标记每行、每列、每个子网格已用的数字,用于剪枝

bool row[10][10];    //row[i][x]  标记在第i行中数字x是否出现了

bool col[10][10];    //col[j][y]  标记在第j列中数字y是否出现了

bool small[10][10];   //small[k][x] 标记在第k个3*3子格中数字z是否出现了

row 和 col的标记比较好处理,关键是找出small子网格的序号与 行i列j的关系

即要知道第i行j列的数字是属于哪个子网格的

首先我们假设子网格的序号如下编排:

由于1<=i、j<=9,我们有: (其中“/”是C++中对整数的除法)

a= i/3 , b= j/3  ,根据九宫格的 行列 与 子网格 的 关系,我们有:

不难发现 3a+b=k

即 3*(i/3)+j/3=k

又我在程序中使用的数组下标为 1~9,grid编号也为1~9

因此上面的关系式可变形为 3*((i-1)/3)+(j-1)/3+1=k

这样我们就能记录k个3*3子格中数字z是否出现了:

下面是我的代码:

 #include<iostream>
#include<cstdio>
#include<ctime>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<vector>
#define inf 1<<25
#define LL long long
using namespace std;
int row[][];
int col[][];
int map[][];
int small[][];
int f(int x,int y)
{
return *((x-)/)+(y-)/+;
}
void init()
{
int i,j;
char ch;
memset(row,,sizeof(row));
memset(col,,sizeof(col));
memset(small,,sizeof(small));
for(i=; i<=; i++)
{
for(j=; j<=; j++)
{
scanf("%c",&ch);
map[i][j]=ch-'';
if(map[i][j])
{
int k;
k=f(i,j);
row[i][map[i][j]]=;
col[j][map[i][j]]=;
small[k][map[i][j]]=;
}
}
getchar();
}
}
int dfs(int x,int y)
{
if(x==)
return ;
int flag=;
if(map[x][y])
{
if(y==)
flag=dfs(x+,);
else
flag=dfs(x,y+);
if(flag)
return ;
else
return ;
}
else
{
int k=f(x,y);
for(int i=; i<=; i++)
if(!row[x][i] && !col[y][i] && !small[k][i])
{
map[x][y]=i;
row[x][i]=;
col[y][i]=;
small[k][i]=;
if(y==)
flag=dfs(x+,);
else
flag=dfs(x,y+);
if(!flag)
{
map[x][y]=;
row[x][i]=;
col[y][i]=;
small[k][i]=;
}
else
return ;
}
}
return ;
}
int main()
{
int t;
scanf("%d",&t);
getchar();
while(t--)
{
init();
dfs(,);
for(int i=; i<=; i++)
{
for(int j=; j<=; j++)
printf("%d",map[i][j]);
printf("\n");
}
}
return ;
}

数独问题的介绍及POJ 2676-Sudoku(dfs+剪枝)的更多相关文章

  1. ACM : POJ 2676 SudoKu DFS - 数独

    SudoKu Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu POJ 2676 Descr ...

  2. poj 2676 Sudoku ( dfs )

    dfs 用的还是不行啊,做题还是得看别人的博客!!! 题目:http://poj.org/problem?id=2676 题意:把一个9行9列的网格,再细分为9个3*3的子网格,要求每行.每列.每个子 ...

  3. 深搜+回溯 POJ 2676 Sudoku

    POJ 2676 Sudoku Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17627   Accepted: 8538 ...

  4. POJ 2676 Sudoku (数独 DFS)

      Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 14368   Accepted: 7102   Special Judg ...

  5. POJ 2676 - Sudoku - [蓝桥杯 数独][DFS]

    题目链接:http://poj.org/problem?id=2676 Time Limit: 2000MS Memory Limit: 65536K Description Sudoku is a ...

  6. 搜索 --- 数独求解 POJ 2676 Sudoku

    Sudoku Problem's Link:   http://poj.org/problem?id=2676 Mean: 略 analyse: 记录所有空位置,判断当前空位置是否可以填某个数,然后直 ...

  7. POJ - 2676 Sudoku 数独游戏 dfs神奇的反搜

    Sudoku Sudoku is a very simple task. A square table with 9 rows and 9 columns is divided to 9 smalle ...

  8. POJ 2676 Sudoku

    Sudoku Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 12005   Accepted: 5984   Special ...

  9. POJ 2676 Sudoku(深搜)

    Sudoku Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Total Submi ...

随机推荐

  1. BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )

    线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子. #include<bits/stdc++.h> using namespace std; #defi ...

  2. 3522: [Poi2014]Hotel( 树形dp )

    枚举中点x( 即选出的三个点 a , b , c 满足 dist( x , a ) = dist( x , b ) = dist( x , c ) ) , 然后以 x 为 root 做 dfs , 显 ...

  3. ant学习记录(复制-移动-删除-依赖综合测试)+fileset

    <?xml version="1.0"?> <project name="targetStudy" default="mkdir&q ...

  4. 前端SEO优化

    结构优化 1.扁平化结构,目录层次越少越好

  5. 一步一步重写 CodeIgniter 框架 (3) —— 用面向对象重构代码

    前面两篇文章为了重点突出 CodeIgniter 框架的原理,程序的结构很乱,有很多全局变量,在这一课中我们采用面向对象的方法对原先代码进行重构. 到目前为止,程序主要完成的就是 URL 分析,并根据 ...

  6. Java__jar包的简单操作

    工作需要研究了下jar,这里就举个简单的例子,以helloworld为例吧 1.启动eclipse编写代码: 次步不做赘述 package cn.test.jar; public class Hell ...

  7. 【JSP】JSP与oracle数据库交互案例

    ************************************************************************ ****原文:blog.csdn.net/clark_ ...

  8. SQL SERVER递归查询

    SQL SERVER 进行递归查询 有如下数据表

  9. 集合简单总结 ArrayList、List、Hashtable、Dictionary

      ============================ 集合综述 ============================== 1.什么是泛型: 泛型就是限制了操作类型,意思如下:       ...

  10. Android Gradle Plugin指南(六)——高级构建定制

    原文地址:http://tools.android.com/tech-docs/new-build-system/user-guide#TOC-Advanced-Build-Customization ...