1.EM算法是含有隐变量的变量的概率模型极大似然估计或极大后验概率估计的迭代算法,含有隐变量的概率模型的数据表示为$P(Y,Z|\theta)$.这里,$Y$是观测变量的数据,$Z$是隐变量的数据,$\theta$是模型参数。EM算法通过迭代求解观测数据的对数似然函数$L(\theta)=logP(Y|\theta)$的极大化,实现极大似然估计。每次迭代包括两步:E步,求期望,即求$logP(Y|\theta)$关于$P(Y|\theta^{(i)})$的期望:

$Q(\theta,\theta^{(i)})=\sum_{Z}logP(Y,Z|\theta)P(Z|Y,\theta^{(i)})$

称为Q函数,这里$\theta^{(i)}$是参数的现现估计值;M步,求极大,即极大化Q函数得到参数的新估计值:$\theta^{(i+1)}=arg~max_{\theta}Q(\theta,\theta^{(i)}) $

在构建具体的EM算法时,重要的是定义Q函数,每次迭代中,EM算法通过极大化Q函数来增大对数似然函数$L(\theta)$.

2.EM算法在每次迭代后均提高观测数据的似然函数值,即:$P(Y|\theta^{(i+1)})\geq P(Y|\theta^{(i)})$

在一般情况下EM算法是收敛的,但是不能保证收敛到全局最优。

3.EM算法应用及其广泛,主要应用于含有隐变量的概率模型的学习,高斯混合模型的参数估计是EM算法的一个重要的应用,下一章节主要介绍隐马尔可夫模型的非监督学习也是EM散发的一个重要的应用。

4.EM算法还可以解释为F函数的极大-极大算法,EM算法有许多的变形,如GEM算法,GEM算法的特点是每次迭代增加F函数值,从而增加似然函数值。

EM算法及其推广的要点的更多相关文章

  1. EM算法及其推广

    概述 EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计. EM算法的每次迭代由两步组成:E步,求期望(expectation): ...

  2. 《统计学习方法》笔记九 EM算法及其推广

    本系列笔记内容参考来源为李航<统计学习方法> EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计或极大后验概率估计.迭代由 (1)E步:求期望 (2)M步:求极大 组成,称 ...

  3. 高斯混合模型参数估计的EM算法

    # coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in r ...

  4. 含隐变量模型求解——EM算法

    1 EM算法的引入1.1 EM算法1.2 EM算法的导出2 EM算法的收敛性3EM算法在高斯混合模型的应用3.1 高斯混合模型Gaussian misture model3.2 GMM中参数估计的EM ...

  5. 机器学习——EM算法

    1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法 ...

  6. 学习笔记——EM算法

    EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求 ...

  7. 斯坦福大学机器学习,EM算法求解高斯混合模型

    斯坦福大学机器学习,EM算法求解高斯混合模型.一种高斯混合模型算法的改进方法---将聚类算法与传统高斯混合模型结合起来的建模方法, 并同时提出的运用距离加权的矢量量化方法获取初始值,并采用衡量相似度的 ...

  8. 机器学习笔记(十)EM算法及实践(以混合高斯模型(GMM)为例来次完整的EM)

    今天要来讨论的是EM算法.第一眼看到EM我就想到了我大枫哥,EM Master,千里马.RUA!!!不知道看这个博客的人有没有懂这个梗的. 好的,言归正传.今天要讲的EM算法,全称是Expectati ...

  9. EM算法及其应用(一)

    EM算法及其应用(一) EM算法及其应用(二): K-means 与 高斯混合模型 EM算法是期望最大化 (Expectation Maximization) 算法的简称,用于含有隐变量的情况下,概率 ...

随机推荐

  1. [置顶] 阅读Oracle官方文档指南

    还在整理中.... EXPDP/IMPDP 相关文档:Utilities 2 Data Pump Export 3 Data Pump Import SQL*Loader 相关文档:Utilities ...

  2. python cookbook学习1

    python cookbook学习笔记 第一章 文本(1) 1.1每次处理一个字符(即每次处理一个字符的方式处理字符串) print list('theString') #方法一,转列表 结果:['t ...

  3. 开始使用THREE.JS

    开始使用THREE.JS 译序 Three.js是一个伟大的开源WebGL库,WebGL允许JavaScript操作GPU,在浏览器端实现真正意义的3D.但是目前这项技术还处在发展阶段,资料极为匮乏, ...

  4. Http的四种post方式

    1.引言 HTTP/1.1 协议规定的 HTTP 请求方法有 OPTIONS.GET.HEAD.POST.PUT.DELETE.TRACE.CONNECT 这几种.其中 POST 一般用来向服务端提交 ...

  5. 批处理清理VS工程目录(递归删除Debug, Release, ipch目录及*.sdf文件)

    用VS写程序最烦的就是VS会产生一大堆乱七八糟的东西,如Degub, Release, ipch目录,还有sdf文件,这些东西占了很大的空间,在linux下编程的话一个make clean就可以很方便 ...

  6. 记一次解决curl https证书问题

    问题起因 在访问https的网站时,报出Peer's Certificate has expired的错误.如下: [root@localhost ~]# curl https://www.baidu ...

  7. DotNet加密方式解析--对称加密

    离过年又近了一天,回家已是近在咫尺,有人欢喜有人愁,因为过几天就得经历每年一度的装逼大戏,亲戚朋友加同学的各方显摆,所以得靠一剂年终奖来装饰一个安稳的年,在这里我想起了一个题目“论装逼的技术性和重要性 ...

  8. CMD杀进程 例如:杀8080端口的进程

    首先:端口被占用的报错形式如下 说明8080端口被占用 解决方案一:查找pid,根据pid去任务管理器的进程中结束占用8080端口号的进程 1.首先按快捷键windows+R,在运行框里输入cmd,如 ...

  9. Writing clean code is what you must do in order to call yourself a professional.

    Clean Code  A Handbook of Agile Software Craftsmanship

  10. SwiftyUserDefaults-封装系统本地化的框架

    // // ViewController.swift // Test4SwiftyUserDefaults // // Created by 马玉龙 on 2017/1/14. // Copyrigh ...