HDU 5130 Signal Interference(计算几何 + 模板)
HDU 5130 Signal Interference(计算几何 + 模板)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5130
Description
Two countries A-Land and B-Land are at war. The territory of A-Land is a simple polygon with no more than 500 vertices. For military use, A-Land constructed a radio tower (also written as A), and it's so powerful that the whole country was under its signal. To interfere A-Land's communication, B-Land decided to build another radio tower (also written as B). According to an accurate estimation, for any point P, if the euclidean distance between P and B is no more than k (0.2 ≤ k < 0.8) times of the distance between P and A, then point P is not able to receive clear signals from A, i.e. be interfered. Your task is to calculate the area in A-Land's territory that are under B-Land's interference.
Input
There are no more than 100 test cases in the input.
In each test case, firstly you are given a positive integer N indicating the amount of vertices on A-Land's territory, and an above mentioned real number k, which is rounded to 4 digits after the decimal point.
Then N lines follow. Each line contains two integers x and y (|x|, |y| ≤ 1000), indicating a vertex's coordinate on A's territory, in counterclockwise or clockwise order.
The last two lines of a test case give radio tower A and B's coordinates in the same form as vertexes' coordinates. You can assume that A is not equal to B.
Output
For each test case, firstly output the case number, then output your answer in one line following the format shown in sample. Please note that there is a blank after the ':'.
Your solution will be accepted if its absolute error or relative error is no more than 10-6.
This problem is special judged.
Sample Input
4 0.5000
-1 -1
1 -1
1 1
-1 1
0 0
-1 0
Sample Output
Case 1: 0.2729710441
题意:
给你n个点按照顺时针或者逆时针排序围成多边形,A,B点,让你计算从某点到B点的距离是到A距离的K倍,求这个图形和多边形的相交的面积。
题解:
求的点带入,化简就是一个圆,然后就是圆和多边形的面积交。套模板。
代码:
#include <bits/stdc++.h>
#define eps 1e-8
using namespace std;
struct Point{
double x,y;
Point(double x=0, double y=0):x(x),y(y) {}
void input() { scanf("%lf%lf",&x,&y); }
};
typedef Point Vector;
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point c,double r):c(c),r(r) {}
Point point(double a) { return Point(c.x + cos(a)*r, c.y + sin(a)*r); }
void input() { scanf("%lf%lf%lf",&c.x,&c.y,&r); }
};
int dcmp(double x) {
if(x < -eps) return -1;
if(x > eps) return 1;
return 0;
}
template <class T> T sqr(T x) { return x * x;}
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
Vector VectorUnit(Vector x){ return x / Length(x);}
Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector v) { return atan2(v.y, v.x); }
bool OnSegment(Point P, Point A, Point B) {
return dcmp(Cross(A-P,B-P)) == 0 && dcmp(Dot(A-P,B-P)) < 0;
}
double DistanceToSeg(Point P, Point A, Point B)
{
if(A == B) return Length(P-A);
Vector v1 = B-A, v2 = P-A, v3 = P-B;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
return fabs(Cross(v1, v2)) / Length(v1);
}
double DistanceToLine(Point P, Point A, Point B){
Vector v1 = B-A, v2 = P-A;
return fabs(Cross(v1,v2)) / Length(v1);
}
Point DisP(Point A, Point B){
return Length(B-A);
}
bool SegmentIntersection(Point A,Point B,Point C,Point D) {
return max(A.x,B.x) >= min(C.x,D.x) &&
max(C.x,D.x) >= min(A.x,B.x) &&
max(A.y,B.y) >= min(C.y,D.y) &&
max(C.y,D.y) >= min(A.y,B.y) &&
dcmp(Cross(C-A,B-A)*Cross(D-A,B-A)) <= 0 &&
dcmp(Cross(A-C,D-C)*Cross(B-C,D-C)) <= 0;
}
Point Zero = Point(0,0);
//sum_ans !!!!!!!fabs()
double TriAngleCircleInsection(Circle C, Point A, Point B)
{
Vector OA = A-C.c, OB = B-C.c;
Vector BA = A-B, BC = C.c-B;
Vector AB = B-A, AC = C.c-A;
double DOA = Length(OA), DOB = Length(OB),DAB = Length(AB), r = C.r;
if(dcmp(Cross(OA,OB)) == 0) return 0;
if(dcmp(DOA-C.r) < 0 && dcmp(DOB-C.r) < 0) return Cross(OA,OB)*0.5;
else if(DOB < r && DOA >= r) {
double x = (Dot(BA,BC) + sqrt(r*r*DAB*DAB-Cross(BA,BC)*Cross(BA,BC)))/DAB;
double TS = Cross(OA,OB)*0.5;
return asin(TS*(1-x/DAB)*2/r/DOA)*r*r*0.5+TS*x/DAB;
}
else if(DOB >= r && DOA < r) {
double y = (Dot(AB,AC)+sqrt(r*r*DAB*DAB-Cross(AB,AC)*Cross(AB,AC)))/DAB;
double TS = Cross(OA,OB)*0.5;
return asin(TS*(1-y/DAB)*2/r/DOB)*r*r*0.5+TS*y/DAB;
}
else if(fabs(Cross(OA,OB)) >= r*DAB || Dot(AB,AC) <= 0 || Dot(BA,BC) <= 0) {
if(Dot(OA,OB) < 0) {
if(Cross(OA,OB) < 0) return (-acos(-1.0)-asin(Cross(OA,OB)/DOA/DOB))*r*r*0.5;
else return ( acos(-1.0)-asin(Cross(OA,OB)/DOA/DOB))*r*r*0.5;
}
else return asin(Cross(OA,OB)/DOA/DOB)*r*r*0.5;
}
else {
double x = (Dot(BA,BC)+sqrt(r*r*DAB*DAB-Cross(BA,BC)*Cross(BA,BC)))/DAB;
double y = (Dot(AB,AC)+sqrt(r*r*DAB*DAB-Cross(AB,AC)*Cross(AB,AC)))/DAB;
double TS = Cross(OA,OB)*0.5;
return (asin(TS*(1-x/DAB)*2/r/DOA)+asin(TS*(1-y/DAB)*2/r/DOB))*r*r*0.5 + TS*((x+y)/DAB-1);
}
}
Point s[600],A,B ;
int main()
{
int n ;
int _t = 0;
while (~scanf("%d",&n)){
double k ;
_t++ ;
scanf("%lf",&k) ;
for (int i = 1;i <= n; i++)
s[i].input();
A.input();B.input();
s[n+1] = s[1];
double D,E,F;
D = (2.0*k*k*A.x - 2.0*B.x)/(1.0-k*k) ;
E = (2.0*k*k*A.y - 2.0*B.y)/(1.0-k*k) ;
F = (B.x*B.x+B.y*B.y-k*k*(A.x*A.x+A.y*A.y))/(1.0-k*k) ;
Circle C = Circle(Point(D*(-0.5),E*(-0.5)),sqrt(D*D+E*E-4.0*F)*0.5) ;
double ans = 0.0;
for (int i = 1; i <= n; i++){
ans = ans + TriAngleCircleInsection(C,s[i],s[i+1]) ;
}
printf("Case %d: %.10lf\n",_t,fabs(ans)) ;
}
return 0;
}
HDU 5130 Signal Interference(计算几何 + 模板)的更多相关文章
- HDU 5130 Signal Interference --计算几何,多边形与圆的交面积
题意: 求所有满足PB <= k*PA 的P所在区域与多边形的交面积. 解法: 2014广州赛区的银牌题,当时竟然没发现是圆,然后就没做出来,然后就gg了. 圆的一般式方程: 设A(x1,y1) ...
- hdu 4667 Building Fence < 计算几何模板>
//大白p263 #include <cmath> #include <cstdio> #include <cstring> #include <string ...
- LA 7072 Signal Interference 计算几何 圆与多边形的交
题意: 给出一个\(n\)个点的简单多边形,和两个点\(A, B\)还有一个常数\(k(0.2 \leq k < 0.8)\). 点\(P\)满足\(\left | PB \right | \l ...
- HDU5130 Signal Interference
/* HDU5130 Signal Interference http://acm.hdu.edu.cn/showproblem.php?pid=5130 计算几何 圆与多边形面积交 * */ #in ...
- lrj计算几何模板
整理了一下大白书上的计算几何模板. #include <cstdio> #include <algorithm> #include <cmath> #include ...
- UVA 12304 - 2D Geometry 110 in 1! - [平面几何基础题大集合][计算几何模板]
题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...
- HDU - 5130 :Signal Interference (多边形与圆的交)
pro:A的监视区域是一个多边形. 如果A的监视区的内满足到A的距离到不超过到B的距离的K倍的面积大小.K<1 sol:高中几何体经验告诉我们满足题意的区域是个圆,那么就是求圆与多边形的交. # ...
- hdu 5130(2014广州 圆与多边形相交模板)
题意:一个很多个点p构成的多边形,pb <= pa * k时p所占区域与多边形相交面积 设p(x,y), (x - xb)^2+(y - yb)^2 / (x - xa)^2+(y ...
- hdu 3060 Area2 (计算几何模板)
Problem Description 小白最近又被空军特招为飞行员,参与一项实战演习.演习的内容还是轰炸某个岛屿(这次的岛屿很大,很大很大很大,大到炸弹怎么扔都能完全在岛屿上引爆),看来小白确实是飞 ...
随机推荐
- C#基础知识回顾--线程传参
C#基础知识回顾--线程传参 在不传递参数情况下,一般大家都使用ThreadStart代理来连接执行函数,ThreadStart委托接收的函数不能有参数, 也不能有返回值.如果希望传递参数给执行函数, ...
- Winform 让跨线程访问变得更简单
Winform 让跨线程访问变得更简单 前言 由于多线程可能导致对控件访问的不一致,导致出现问题.C#中默认是要线程安全的,即在访问控件时需要首先判断是否跨线程,如果是跨线程的直接访问,在运行时会抛出 ...
- 使用pentaho工具将数据库数据导入导出为Excel
写在前面:本篇博客讲述的是如何使用pentaho工具快速的将数据库数据导出为Excel文件,以及如何将Excel文件数据导入数据库. 补充:使用此工具并不需要任何一句代码并能快速便捷解决实际问题,此工 ...
- Wget 命令详解
Wget主要用于下载文件,在安装软件时会经常用到,以下对wget做简单说明. 1.下载单个文件:wget http://www.baidu.com.命令会直接在当前目录下载一个index.html的文 ...
- XAF-Domain Components 技术 使用接口来定义ORM业务对象
一.简介 Domain Component组件技术,以下简称DC,是扩展自XPO的, 官方不建议新手使用DC. 如果你用过EF,XPO及类似的ORM,这是很容易理解的,DC是基于XPO的,只是原业定义 ...
- 2015 ACM / ICPC 亚洲区域赛总结(长春站&北京站)
队名:Unlimited Code Works(无尽编码) 队员:Wu.Wang.Zhou 先说一下队伍:Wu是大三学长:Wang高中noip省一:我最渣,去年来大学开始学的a+b,参加今年区域赛之 ...
- USACO 3.4 American Heritage
American Heritage Farmer John takes the heritage of his cows very seriously. He is not, however, a t ...
- JNDI中 java:comp/env 的理解
J2EE 上下文环境变量前缀,一般有如下几种:java:/comp/env/jdbcjava:/comp/env/urljava:/comp/env/mailjava:/comp/env/jms在部署 ...
- JS 常用功能收集
JS 常用效果收集 1. 回到顶部>> 爱词霸
- lamda 表达式
Lamda 表达式 高阶语言中的lamda表达式, 灵感来自于lamda演算.lamda演算包括一条变换规则 (变量替换) 和一条函数定义方式, 通过带入和替换, 对输入产生输出. Connect 新 ...
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5130
Description
Two countries A-Land and B-Land are at war. The territory of A-Land is a simple polygon with no more than 500 vertices. For military use, A-Land constructed a radio tower (also written as A), and it's so powerful that the whole country was under its signal. To interfere A-Land's communication, B-Land decided to build another radio tower (also written as B). According to an accurate estimation, for any point P, if the euclidean distance between P and B is no more than k (0.2 ≤ k < 0.8) times of the distance between P and A, then point P is not able to receive clear signals from A, i.e. be interfered. Your task is to calculate the area in A-Land's territory that are under B-Land's interference.
Input
There are no more than 100 test cases in the input.
In each test case, firstly you are given a positive integer N indicating the amount of vertices on A-Land's territory, and an above mentioned real number k, which is rounded to 4 digits after the decimal point.
Then N lines follow. Each line contains two integers x and y (|x|, |y| ≤ 1000), indicating a vertex's coordinate on A's territory, in counterclockwise or clockwise order.
The last two lines of a test case give radio tower A and B's coordinates in the same form as vertexes' coordinates. You can assume that A is not equal to B.
Output
For each test case, firstly output the case number, then output your answer in one line following the format shown in sample. Please note that there is a blank after the ':'.
Your solution will be accepted if its absolute error or relative error is no more than 10-6.
This problem is special judged.
Sample Input
4 0.5000
-1 -1
1 -1
1 1
-1 1
0 0
-1 0
Sample Output
Case 1: 0.2729710441
题意:
给你n个点按照顺时针或者逆时针排序围成多边形,A,B点,让你计算从某点到B点的距离是到A距离的K倍,求这个图形和多边形的相交的面积。
题解:
求的点带入,化简就是一个圆,然后就是圆和多边形的面积交。套模板。
代码:
#include <bits/stdc++.h>
#define eps 1e-8
using namespace std;
struct Point{
double x,y;
Point(double x=0, double y=0):x(x),y(y) {}
void input() { scanf("%lf%lf",&x,&y); }
};
typedef Point Vector;
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point c,double r):c(c),r(r) {}
Point point(double a) { return Point(c.x + cos(a)*r, c.y + sin(a)*r); }
void input() { scanf("%lf%lf%lf",&c.x,&c.y,&r); }
};
int dcmp(double x) {
if(x < -eps) return -1;
if(x > eps) return 1;
return 0;
}
template <class T> T sqr(T x) { return x * x;}
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
Vector VectorUnit(Vector x){ return x / Length(x);}
Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector v) { return atan2(v.y, v.x); }
bool OnSegment(Point P, Point A, Point B) {
return dcmp(Cross(A-P,B-P)) == 0 && dcmp(Dot(A-P,B-P)) < 0;
}
double DistanceToSeg(Point P, Point A, Point B)
{
if(A == B) return Length(P-A);
Vector v1 = B-A, v2 = P-A, v3 = P-B;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
return fabs(Cross(v1, v2)) / Length(v1);
}
double DistanceToLine(Point P, Point A, Point B){
Vector v1 = B-A, v2 = P-A;
return fabs(Cross(v1,v2)) / Length(v1);
}
Point DisP(Point A, Point B){
return Length(B-A);
}
bool SegmentIntersection(Point A,Point B,Point C,Point D) {
return max(A.x,B.x) >= min(C.x,D.x) &&
max(C.x,D.x) >= min(A.x,B.x) &&
max(A.y,B.y) >= min(C.y,D.y) &&
max(C.y,D.y) >= min(A.y,B.y) &&
dcmp(Cross(C-A,B-A)*Cross(D-A,B-A)) <= 0 &&
dcmp(Cross(A-C,D-C)*Cross(B-C,D-C)) <= 0;
}
Point Zero = Point(0,0);
//sum_ans !!!!!!!fabs()
double TriAngleCircleInsection(Circle C, Point A, Point B)
{
Vector OA = A-C.c, OB = B-C.c;
Vector BA = A-B, BC = C.c-B;
Vector AB = B-A, AC = C.c-A;
double DOA = Length(OA), DOB = Length(OB),DAB = Length(AB), r = C.r;
if(dcmp(Cross(OA,OB)) == 0) return 0;
if(dcmp(DOA-C.r) < 0 && dcmp(DOB-C.r) < 0) return Cross(OA,OB)*0.5;
else if(DOB < r && DOA >= r) {
double x = (Dot(BA,BC) + sqrt(r*r*DAB*DAB-Cross(BA,BC)*Cross(BA,BC)))/DAB;
double TS = Cross(OA,OB)*0.5;
return asin(TS*(1-x/DAB)*2/r/DOA)*r*r*0.5+TS*x/DAB;
}
else if(DOB >= r && DOA < r) {
double y = (Dot(AB,AC)+sqrt(r*r*DAB*DAB-Cross(AB,AC)*Cross(AB,AC)))/DAB;
double TS = Cross(OA,OB)*0.5;
return asin(TS*(1-y/DAB)*2/r/DOB)*r*r*0.5+TS*y/DAB;
}
else if(fabs(Cross(OA,OB)) >= r*DAB || Dot(AB,AC) <= 0 || Dot(BA,BC) <= 0) {
if(Dot(OA,OB) < 0) {
if(Cross(OA,OB) < 0) return (-acos(-1.0)-asin(Cross(OA,OB)/DOA/DOB))*r*r*0.5;
else return ( acos(-1.0)-asin(Cross(OA,OB)/DOA/DOB))*r*r*0.5;
}
else return asin(Cross(OA,OB)/DOA/DOB)*r*r*0.5;
}
else {
double x = (Dot(BA,BC)+sqrt(r*r*DAB*DAB-Cross(BA,BC)*Cross(BA,BC)))/DAB;
double y = (Dot(AB,AC)+sqrt(r*r*DAB*DAB-Cross(AB,AC)*Cross(AB,AC)))/DAB;
double TS = Cross(OA,OB)*0.5;
return (asin(TS*(1-x/DAB)*2/r/DOA)+asin(TS*(1-y/DAB)*2/r/DOB))*r*r*0.5 + TS*((x+y)/DAB-1);
}
}
Point s[600],A,B ;
int main()
{
int n ;
int _t = 0;
while (~scanf("%d",&n)){
double k ;
_t++ ;
scanf("%lf",&k) ;
for (int i = 1;i <= n; i++)
s[i].input();
A.input();B.input();
s[n+1] = s[1];
double D,E,F;
D = (2.0*k*k*A.x - 2.0*B.x)/(1.0-k*k) ;
E = (2.0*k*k*A.y - 2.0*B.y)/(1.0-k*k) ;
F = (B.x*B.x+B.y*B.y-k*k*(A.x*A.x+A.y*A.y))/(1.0-k*k) ;
Circle C = Circle(Point(D*(-0.5),E*(-0.5)),sqrt(D*D+E*E-4.0*F)*0.5) ;
double ans = 0.0;
for (int i = 1; i <= n; i++){
ans = ans + TriAngleCircleInsection(C,s[i],s[i+1]) ;
}
printf("Case %d: %.10lf\n",_t,fabs(ans)) ;
}
return 0;
}
题意: 求所有满足PB <= k*PA 的P所在区域与多边形的交面积. 解法: 2014广州赛区的银牌题,当时竟然没发现是圆,然后就没做出来,然后就gg了. 圆的一般式方程: 设A(x1,y1) ...
//大白p263 #include <cmath> #include <cstdio> #include <cstring> #include <string ...
题意: 给出一个\(n\)个点的简单多边形,和两个点\(A, B\)还有一个常数\(k(0.2 \leq k < 0.8)\). 点\(P\)满足\(\left | PB \right | \l ...
/* HDU5130 Signal Interference http://acm.hdu.edu.cn/showproblem.php?pid=5130 计算几何 圆与多边形面积交 * */ #in ...
整理了一下大白书上的计算几何模板. #include <cstdio> #include <algorithm> #include <cmath> #include ...
题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...
pro:A的监视区域是一个多边形. 如果A的监视区的内满足到A的距离到不超过到B的距离的K倍的面积大小.K<1 sol:高中几何体经验告诉我们满足题意的区域是个圆,那么就是求圆与多边形的交. # ...
题意:一个很多个点p构成的多边形,pb <= pa * k时p所占区域与多边形相交面积 设p(x,y), (x - xb)^2+(y - yb)^2 / (x - xa)^2+(y ...
Problem Description 小白最近又被空军特招为飞行员,参与一项实战演习.演习的内容还是轰炸某个岛屿(这次的岛屿很大,很大很大很大,大到炸弹怎么扔都能完全在岛屿上引爆),看来小白确实是飞 ...
C#基础知识回顾--线程传参 在不传递参数情况下,一般大家都使用ThreadStart代理来连接执行函数,ThreadStart委托接收的函数不能有参数, 也不能有返回值.如果希望传递参数给执行函数, ...
Winform 让跨线程访问变得更简单 前言 由于多线程可能导致对控件访问的不一致,导致出现问题.C#中默认是要线程安全的,即在访问控件时需要首先判断是否跨线程,如果是跨线程的直接访问,在运行时会抛出 ...
写在前面:本篇博客讲述的是如何使用pentaho工具快速的将数据库数据导出为Excel文件,以及如何将Excel文件数据导入数据库. 补充:使用此工具并不需要任何一句代码并能快速便捷解决实际问题,此工 ...
Wget主要用于下载文件,在安装软件时会经常用到,以下对wget做简单说明. 1.下载单个文件:wget http://www.baidu.com.命令会直接在当前目录下载一个index.html的文 ...
一.简介 Domain Component组件技术,以下简称DC,是扩展自XPO的, 官方不建议新手使用DC. 如果你用过EF,XPO及类似的ORM,这是很容易理解的,DC是基于XPO的,只是原业定义 ...
队名:Unlimited Code Works(无尽编码) 队员:Wu.Wang.Zhou 先说一下队伍:Wu是大三学长:Wang高中noip省一:我最渣,去年来大学开始学的a+b,参加今年区域赛之 ...
American Heritage Farmer John takes the heritage of his cows very seriously. He is not, however, a t ...
J2EE 上下文环境变量前缀,一般有如下几种:java:/comp/env/jdbcjava:/comp/env/urljava:/comp/env/mailjava:/comp/env/jms在部署 ...
JS 常用效果收集 1. 回到顶部>> 爱词霸
Lamda 表达式 高阶语言中的lamda表达式, 灵感来自于lamda演算.lamda演算包括一条变换规则 (变量替换) 和一条函数定义方式, 通过带入和替换, 对输入产生输出. Connect 新 ...