HDU 5130 Signal Interference(计算几何 + 模板)
HDU 5130 Signal Interference(计算几何 + 模板)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5130
Description
Two countries A-Land and B-Land are at war. The territory of A-Land is a simple polygon with no more than 500 vertices. For military use, A-Land constructed a radio tower (also written as A), and it's so powerful that the whole country was under its signal. To interfere A-Land's communication, B-Land decided to build another radio tower (also written as B). According to an accurate estimation, for any point P, if the euclidean distance between P and B is no more than k (0.2 ≤ k < 0.8) times of the distance between P and A, then point P is not able to receive clear signals from A, i.e. be interfered. Your task is to calculate the area in A-Land's territory that are under B-Land's interference.
Input
There are no more than 100 test cases in the input.
In each test case, firstly you are given a positive integer N indicating the amount of vertices on A-Land's territory, and an above mentioned real number k, which is rounded to 4 digits after the decimal point.
Then N lines follow. Each line contains two integers x and y (|x|, |y| ≤ 1000), indicating a vertex's coordinate on A's territory, in counterclockwise or clockwise order.
The last two lines of a test case give radio tower A and B's coordinates in the same form as vertexes' coordinates. You can assume that A is not equal to B.
Output
For each test case, firstly output the case number, then output your answer in one line following the format shown in sample. Please note that there is a blank after the ':'.
Your solution will be accepted if its absolute error or relative error is no more than 10-6.
This problem is special judged.
Sample Input
4 0.5000
-1 -1
1 -1
1 1
-1 1
0 0
-1 0
Sample Output
Case 1: 0.2729710441
题意:
给你n个点按照顺时针或者逆时针排序围成多边形,A,B点,让你计算从某点到B点的距离是到A距离的K倍,求这个图形和多边形的相交的面积。
题解:
求的点带入,化简就是一个圆,然后就是圆和多边形的面积交。套模板。
代码:
#include <bits/stdc++.h>
#define eps 1e-8
using namespace std;
struct Point{
double x,y;
Point(double x=0, double y=0):x(x),y(y) {}
void input() { scanf("%lf%lf",&x,&y); }
};
typedef Point Vector;
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point c,double r):c(c),r(r) {}
Point point(double a) { return Point(c.x + cos(a)*r, c.y + sin(a)*r); }
void input() { scanf("%lf%lf%lf",&c.x,&c.y,&r); }
};
int dcmp(double x) {
if(x < -eps) return -1;
if(x > eps) return 1;
return 0;
}
template <class T> T sqr(T x) { return x * x;}
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
Vector VectorUnit(Vector x){ return x / Length(x);}
Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector v) { return atan2(v.y, v.x); }
bool OnSegment(Point P, Point A, Point B) {
return dcmp(Cross(A-P,B-P)) == 0 && dcmp(Dot(A-P,B-P)) < 0;
}
double DistanceToSeg(Point P, Point A, Point B)
{
if(A == B) return Length(P-A);
Vector v1 = B-A, v2 = P-A, v3 = P-B;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
return fabs(Cross(v1, v2)) / Length(v1);
}
double DistanceToLine(Point P, Point A, Point B){
Vector v1 = B-A, v2 = P-A;
return fabs(Cross(v1,v2)) / Length(v1);
}
Point DisP(Point A, Point B){
return Length(B-A);
}
bool SegmentIntersection(Point A,Point B,Point C,Point D) {
return max(A.x,B.x) >= min(C.x,D.x) &&
max(C.x,D.x) >= min(A.x,B.x) &&
max(A.y,B.y) >= min(C.y,D.y) &&
max(C.y,D.y) >= min(A.y,B.y) &&
dcmp(Cross(C-A,B-A)*Cross(D-A,B-A)) <= 0 &&
dcmp(Cross(A-C,D-C)*Cross(B-C,D-C)) <= 0;
}
Point Zero = Point(0,0);
//sum_ans !!!!!!!fabs()
double TriAngleCircleInsection(Circle C, Point A, Point B)
{
Vector OA = A-C.c, OB = B-C.c;
Vector BA = A-B, BC = C.c-B;
Vector AB = B-A, AC = C.c-A;
double DOA = Length(OA), DOB = Length(OB),DAB = Length(AB), r = C.r;
if(dcmp(Cross(OA,OB)) == 0) return 0;
if(dcmp(DOA-C.r) < 0 && dcmp(DOB-C.r) < 0) return Cross(OA,OB)*0.5;
else if(DOB < r && DOA >= r) {
double x = (Dot(BA,BC) + sqrt(r*r*DAB*DAB-Cross(BA,BC)*Cross(BA,BC)))/DAB;
double TS = Cross(OA,OB)*0.5;
return asin(TS*(1-x/DAB)*2/r/DOA)*r*r*0.5+TS*x/DAB;
}
else if(DOB >= r && DOA < r) {
double y = (Dot(AB,AC)+sqrt(r*r*DAB*DAB-Cross(AB,AC)*Cross(AB,AC)))/DAB;
double TS = Cross(OA,OB)*0.5;
return asin(TS*(1-y/DAB)*2/r/DOB)*r*r*0.5+TS*y/DAB;
}
else if(fabs(Cross(OA,OB)) >= r*DAB || Dot(AB,AC) <= 0 || Dot(BA,BC) <= 0) {
if(Dot(OA,OB) < 0) {
if(Cross(OA,OB) < 0) return (-acos(-1.0)-asin(Cross(OA,OB)/DOA/DOB))*r*r*0.5;
else return ( acos(-1.0)-asin(Cross(OA,OB)/DOA/DOB))*r*r*0.5;
}
else return asin(Cross(OA,OB)/DOA/DOB)*r*r*0.5;
}
else {
double x = (Dot(BA,BC)+sqrt(r*r*DAB*DAB-Cross(BA,BC)*Cross(BA,BC)))/DAB;
double y = (Dot(AB,AC)+sqrt(r*r*DAB*DAB-Cross(AB,AC)*Cross(AB,AC)))/DAB;
double TS = Cross(OA,OB)*0.5;
return (asin(TS*(1-x/DAB)*2/r/DOA)+asin(TS*(1-y/DAB)*2/r/DOB))*r*r*0.5 + TS*((x+y)/DAB-1);
}
}
Point s[600],A,B ;
int main()
{
int n ;
int _t = 0;
while (~scanf("%d",&n)){
double k ;
_t++ ;
scanf("%lf",&k) ;
for (int i = 1;i <= n; i++)
s[i].input();
A.input();B.input();
s[n+1] = s[1];
double D,E,F;
D = (2.0*k*k*A.x - 2.0*B.x)/(1.0-k*k) ;
E = (2.0*k*k*A.y - 2.0*B.y)/(1.0-k*k) ;
F = (B.x*B.x+B.y*B.y-k*k*(A.x*A.x+A.y*A.y))/(1.0-k*k) ;
Circle C = Circle(Point(D*(-0.5),E*(-0.5)),sqrt(D*D+E*E-4.0*F)*0.5) ;
double ans = 0.0;
for (int i = 1; i <= n; i++){
ans = ans + TriAngleCircleInsection(C,s[i],s[i+1]) ;
}
printf("Case %d: %.10lf\n",_t,fabs(ans)) ;
}
return 0;
}
HDU 5130 Signal Interference(计算几何 + 模板)的更多相关文章
- HDU 5130 Signal Interference --计算几何,多边形与圆的交面积
题意: 求所有满足PB <= k*PA 的P所在区域与多边形的交面积. 解法: 2014广州赛区的银牌题,当时竟然没发现是圆,然后就没做出来,然后就gg了. 圆的一般式方程: 设A(x1,y1) ...
- hdu 4667 Building Fence < 计算几何模板>
//大白p263 #include <cmath> #include <cstdio> #include <cstring> #include <string ...
- LA 7072 Signal Interference 计算几何 圆与多边形的交
题意: 给出一个\(n\)个点的简单多边形,和两个点\(A, B\)还有一个常数\(k(0.2 \leq k < 0.8)\). 点\(P\)满足\(\left | PB \right | \l ...
- HDU5130 Signal Interference
/* HDU5130 Signal Interference http://acm.hdu.edu.cn/showproblem.php?pid=5130 计算几何 圆与多边形面积交 * */ #in ...
- lrj计算几何模板
整理了一下大白书上的计算几何模板. #include <cstdio> #include <algorithm> #include <cmath> #include ...
- UVA 12304 - 2D Geometry 110 in 1! - [平面几何基础题大集合][计算几何模板]
题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...
- HDU - 5130 :Signal Interference (多边形与圆的交)
pro:A的监视区域是一个多边形. 如果A的监视区的内满足到A的距离到不超过到B的距离的K倍的面积大小.K<1 sol:高中几何体经验告诉我们满足题意的区域是个圆,那么就是求圆与多边形的交. # ...
- hdu 5130(2014广州 圆与多边形相交模板)
题意:一个很多个点p构成的多边形,pb <= pa * k时p所占区域与多边形相交面积 设p(x,y), (x - xb)^2+(y - yb)^2 / (x - xa)^2+(y ...
- hdu 3060 Area2 (计算几何模板)
Problem Description 小白最近又被空军特招为飞行员,参与一项实战演习.演习的内容还是轰炸某个岛屿(这次的岛屿很大,很大很大很大,大到炸弹怎么扔都能完全在岛屿上引爆),看来小白确实是飞 ...
随机推荐
- C# 操作 Excel 常见问题收集和整理
C# 操作 Excel 常见问题收集和整理(定期更新,欢迎交流) 经常会有项目需要把表格导出为 Excel 文件,或者是导入一份 Excel 来操作,那么如何在 C# 中操作 Excel 文件成了一个 ...
- Django入门实践(一)
Django入门实践(一) Django编程思路+入门 认识Django有一个多月了,我觉得学习Django应该先理清它的编程思路.它是典型的MVC框架(在Django里也称MTV),我觉得Djang ...
- spring得到实例和new一个实例,哪个快?
spring配置的bean是默认单例,那么在程序中,得到一个实例一定比创建一个实例的速度快,也更加省资源.今天实际测试的时候发现,new 一个对象比spring得到一个对象快多了.后面自己又加了个单例 ...
- hdu4474 Yet Another Multiple Problem
Yet Another Multiple Problem Description There are tons of problems about integer multiples. Despite ...
- 高反差保留滤镜学习OpenCV:滤镜系列(11)——高反差保留
这几周笔者几篇文章介绍了改高反差保留滤镜的文章. 关联文章的地址 高反差保留就是高通滤波 r=(pix[x,y]-avg(R))/128 pix[x,y]*r+128*(1-r) #include & ...
- 深入Java虚拟机:JVM中的Stack和Heap
在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的 ...
- [.net] c# webservice
采用的工具VS2010生成工程 1. 生成webservice工程:建 ASP.NET 空WEB 应用程序. 2. 在建好的ASP.NET 空WEB应用程序中新建项“web 服务”. 完成上述内容工程 ...
- 微信公众平台开发之基于百度 BAE3.0 的开发环境搭建(MyEclipse + SVN)
等待加载完成后,在"Personal Sites" 栏目中会显示你加载的SVN的相关内容,展开"SVN"分别选择"Core SVNKit Librar ...
- Android Studio报错 Error: A library uses the same package as this project
今天在导入一个项目的时候,as报错 Error: A library uses the same package as this project 经过百度Google 发现解决办法:在modules的 ...
- vue使用resource发送ajax请求
<script type="text/javascript"> new Vue({ el:'#app', created:function(){ var url=&qu ...
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5130
Description
Two countries A-Land and B-Land are at war. The territory of A-Land is a simple polygon with no more than 500 vertices. For military use, A-Land constructed a radio tower (also written as A), and it's so powerful that the whole country was under its signal. To interfere A-Land's communication, B-Land decided to build another radio tower (also written as B). According to an accurate estimation, for any point P, if the euclidean distance between P and B is no more than k (0.2 ≤ k < 0.8) times of the distance between P and A, then point P is not able to receive clear signals from A, i.e. be interfered. Your task is to calculate the area in A-Land's territory that are under B-Land's interference.
Input
There are no more than 100 test cases in the input.
In each test case, firstly you are given a positive integer N indicating the amount of vertices on A-Land's territory, and an above mentioned real number k, which is rounded to 4 digits after the decimal point.
Then N lines follow. Each line contains two integers x and y (|x|, |y| ≤ 1000), indicating a vertex's coordinate on A's territory, in counterclockwise or clockwise order.
The last two lines of a test case give radio tower A and B's coordinates in the same form as vertexes' coordinates. You can assume that A is not equal to B.
Output
For each test case, firstly output the case number, then output your answer in one line following the format shown in sample. Please note that there is a blank after the ':'.
Your solution will be accepted if its absolute error or relative error is no more than 10-6.
This problem is special judged.
Sample Input
4 0.5000
-1 -1
1 -1
1 1
-1 1
0 0
-1 0
Sample Output
Case 1: 0.2729710441
题意:
给你n个点按照顺时针或者逆时针排序围成多边形,A,B点,让你计算从某点到B点的距离是到A距离的K倍,求这个图形和多边形的相交的面积。
题解:
求的点带入,化简就是一个圆,然后就是圆和多边形的面积交。套模板。
代码:
#include <bits/stdc++.h>
#define eps 1e-8
using namespace std;
struct Point{
double x,y;
Point(double x=0, double y=0):x(x),y(y) {}
void input() { scanf("%lf%lf",&x,&y); }
};
typedef Point Vector;
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point c,double r):c(c),r(r) {}
Point point(double a) { return Point(c.x + cos(a)*r, c.y + sin(a)*r); }
void input() { scanf("%lf%lf%lf",&c.x,&c.y,&r); }
};
int dcmp(double x) {
if(x < -eps) return -1;
if(x > eps) return 1;
return 0;
}
template <class T> T sqr(T x) { return x * x;}
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
Vector VectorUnit(Vector x){ return x / Length(x);}
Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector v) { return atan2(v.y, v.x); }
bool OnSegment(Point P, Point A, Point B) {
return dcmp(Cross(A-P,B-P)) == 0 && dcmp(Dot(A-P,B-P)) < 0;
}
double DistanceToSeg(Point P, Point A, Point B)
{
if(A == B) return Length(P-A);
Vector v1 = B-A, v2 = P-A, v3 = P-B;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
return fabs(Cross(v1, v2)) / Length(v1);
}
double DistanceToLine(Point P, Point A, Point B){
Vector v1 = B-A, v2 = P-A;
return fabs(Cross(v1,v2)) / Length(v1);
}
Point DisP(Point A, Point B){
return Length(B-A);
}
bool SegmentIntersection(Point A,Point B,Point C,Point D) {
return max(A.x,B.x) >= min(C.x,D.x) &&
max(C.x,D.x) >= min(A.x,B.x) &&
max(A.y,B.y) >= min(C.y,D.y) &&
max(C.y,D.y) >= min(A.y,B.y) &&
dcmp(Cross(C-A,B-A)*Cross(D-A,B-A)) <= 0 &&
dcmp(Cross(A-C,D-C)*Cross(B-C,D-C)) <= 0;
}
Point Zero = Point(0,0);
//sum_ans !!!!!!!fabs()
double TriAngleCircleInsection(Circle C, Point A, Point B)
{
Vector OA = A-C.c, OB = B-C.c;
Vector BA = A-B, BC = C.c-B;
Vector AB = B-A, AC = C.c-A;
double DOA = Length(OA), DOB = Length(OB),DAB = Length(AB), r = C.r;
if(dcmp(Cross(OA,OB)) == 0) return 0;
if(dcmp(DOA-C.r) < 0 && dcmp(DOB-C.r) < 0) return Cross(OA,OB)*0.5;
else if(DOB < r && DOA >= r) {
double x = (Dot(BA,BC) + sqrt(r*r*DAB*DAB-Cross(BA,BC)*Cross(BA,BC)))/DAB;
double TS = Cross(OA,OB)*0.5;
return asin(TS*(1-x/DAB)*2/r/DOA)*r*r*0.5+TS*x/DAB;
}
else if(DOB >= r && DOA < r) {
double y = (Dot(AB,AC)+sqrt(r*r*DAB*DAB-Cross(AB,AC)*Cross(AB,AC)))/DAB;
double TS = Cross(OA,OB)*0.5;
return asin(TS*(1-y/DAB)*2/r/DOB)*r*r*0.5+TS*y/DAB;
}
else if(fabs(Cross(OA,OB)) >= r*DAB || Dot(AB,AC) <= 0 || Dot(BA,BC) <= 0) {
if(Dot(OA,OB) < 0) {
if(Cross(OA,OB) < 0) return (-acos(-1.0)-asin(Cross(OA,OB)/DOA/DOB))*r*r*0.5;
else return ( acos(-1.0)-asin(Cross(OA,OB)/DOA/DOB))*r*r*0.5;
}
else return asin(Cross(OA,OB)/DOA/DOB)*r*r*0.5;
}
else {
double x = (Dot(BA,BC)+sqrt(r*r*DAB*DAB-Cross(BA,BC)*Cross(BA,BC)))/DAB;
double y = (Dot(AB,AC)+sqrt(r*r*DAB*DAB-Cross(AB,AC)*Cross(AB,AC)))/DAB;
double TS = Cross(OA,OB)*0.5;
return (asin(TS*(1-x/DAB)*2/r/DOA)+asin(TS*(1-y/DAB)*2/r/DOB))*r*r*0.5 + TS*((x+y)/DAB-1);
}
}
Point s[600],A,B ;
int main()
{
int n ;
int _t = 0;
while (~scanf("%d",&n)){
double k ;
_t++ ;
scanf("%lf",&k) ;
for (int i = 1;i <= n; i++)
s[i].input();
A.input();B.input();
s[n+1] = s[1];
double D,E,F;
D = (2.0*k*k*A.x - 2.0*B.x)/(1.0-k*k) ;
E = (2.0*k*k*A.y - 2.0*B.y)/(1.0-k*k) ;
F = (B.x*B.x+B.y*B.y-k*k*(A.x*A.x+A.y*A.y))/(1.0-k*k) ;
Circle C = Circle(Point(D*(-0.5),E*(-0.5)),sqrt(D*D+E*E-4.0*F)*0.5) ;
double ans = 0.0;
for (int i = 1; i <= n; i++){
ans = ans + TriAngleCircleInsection(C,s[i],s[i+1]) ;
}
printf("Case %d: %.10lf\n",_t,fabs(ans)) ;
}
return 0;
}
题意: 求所有满足PB <= k*PA 的P所在区域与多边形的交面积. 解法: 2014广州赛区的银牌题,当时竟然没发现是圆,然后就没做出来,然后就gg了. 圆的一般式方程: 设A(x1,y1) ...
//大白p263 #include <cmath> #include <cstdio> #include <cstring> #include <string ...
题意: 给出一个\(n\)个点的简单多边形,和两个点\(A, B\)还有一个常数\(k(0.2 \leq k < 0.8)\). 点\(P\)满足\(\left | PB \right | \l ...
/* HDU5130 Signal Interference http://acm.hdu.edu.cn/showproblem.php?pid=5130 计算几何 圆与多边形面积交 * */ #in ...
整理了一下大白书上的计算几何模板. #include <cstdio> #include <algorithm> #include <cmath> #include ...
题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...
pro:A的监视区域是一个多边形. 如果A的监视区的内满足到A的距离到不超过到B的距离的K倍的面积大小.K<1 sol:高中几何体经验告诉我们满足题意的区域是个圆,那么就是求圆与多边形的交. # ...
题意:一个很多个点p构成的多边形,pb <= pa * k时p所占区域与多边形相交面积 设p(x,y), (x - xb)^2+(y - yb)^2 / (x - xa)^2+(y ...
Problem Description 小白最近又被空军特招为飞行员,参与一项实战演习.演习的内容还是轰炸某个岛屿(这次的岛屿很大,很大很大很大,大到炸弹怎么扔都能完全在岛屿上引爆),看来小白确实是飞 ...
C# 操作 Excel 常见问题收集和整理(定期更新,欢迎交流) 经常会有项目需要把表格导出为 Excel 文件,或者是导入一份 Excel 来操作,那么如何在 C# 中操作 Excel 文件成了一个 ...
Django入门实践(一) Django编程思路+入门 认识Django有一个多月了,我觉得学习Django应该先理清它的编程思路.它是典型的MVC框架(在Django里也称MTV),我觉得Djang ...
spring配置的bean是默认单例,那么在程序中,得到一个实例一定比创建一个实例的速度快,也更加省资源.今天实际测试的时候发现,new 一个对象比spring得到一个对象快多了.后面自己又加了个单例 ...
Yet Another Multiple Problem Description There are tons of problems about integer multiples. Despite ...
这几周笔者几篇文章介绍了改高反差保留滤镜的文章. 关联文章的地址 高反差保留就是高通滤波 r=(pix[x,y]-avg(R))/128 pix[x,y]*r+128*(1-r) #include & ...
在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的 ...
采用的工具VS2010生成工程 1. 生成webservice工程:建 ASP.NET 空WEB 应用程序. 2. 在建好的ASP.NET 空WEB应用程序中新建项“web 服务”. 完成上述内容工程 ...
等待加载完成后,在"Personal Sites" 栏目中会显示你加载的SVN的相关内容,展开"SVN"分别选择"Core SVNKit Librar ...
今天在导入一个项目的时候,as报错 Error: A library uses the same package as this project 经过百度Google 发现解决办法:在modules的 ...
<script type="text/javascript"> new Vue({ el:'#app', created:function(){ var url=&qu ...