time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to
an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black
mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess
draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse
is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there
are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so
according to the rule the dragon wins.

题意:一个袋子里有w个白老鼠,b个黑老鼠,王妃和龙依次取,王妃先取,先取到白老鼠

的为胜者,当中龙取老鼠的时候,取出一仅仅后,会有随机的一仅仅老鼠跑出来,并且取老鼠的

时候,每仅仅老鼠取到的概率是一样的,跑出来的概率也是一样的,  让你算王妃赢的概率。

思路: dp[i][j] 表示 白老鼠为i仅仅,黑老鼠为j仅仅时,王妃赢的概率,

有四种状态:

(1)  王妃取到白鼠  。  dp[ i ][ j ] + =  i  / ( i + j ) ;

(2)  王妃取到黒鼠,龙取到白鼠 。    dp[ i ][ j ] + = 0.0 ;

(3) 王妃取到黒鼠,龙取到黑鼠
,跑出来一仅仅黑鼠  。 dp[i][j]+=j/(i+j) * (j-1)*/(i+j-1) * (j-2)*/(i+j-2) * dp[i][j-3];

(4) 王妃取到黒鼠,龙取到黑鼠
,跑出来一仅仅白鼠  。 dp[i][j]+=j*/(i+j) * (j-1)*/(i+j-1) * i*/(i+j-2) * dp[i-1][j-2];

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=1100; double dp[maxn][maxn];
int n,m; int main()
{
while(scanf("%d %d",&n,&m)!=EOF)
{
memset(dp,0,sizeof(dp));
for(int i=1; i<=n; i++) dp[i][0]=1.0;
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
dp[i][j]+=(i*1.0)/(i+j);
if(j>=3) dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * (j-2)*1.0/(i+j-2) * dp[i][j-3];
if(j>=2) dp[i][j]+=j*1.0/(i+j) * (j-1)*1.0/(i+j-1) * i*1.0/(i+j-2) * dp[i-1][j-2];
}
printf("%.9lf\n",dp[n][m]);
}
return 0;
}

code forces 148D Bag of mice (概率DP)的更多相关文章

  1. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  4. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  5. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  6. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  7. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  8. CF 148D. Bag of mice (可能性DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  9. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

随机推荐

  1. Vertica: 基于DBMS架构的列存储数据仓库

    介绍 Vertica(属于HP公司),是一个基于DBMS架构的数据库系统,适合读密集的分析型数据库应用,比方数据仓库,白皮书中全名称为VerticaAnalytic Database.从命名中也可以看 ...

  2. 自己写CPU第四阶段(2)——验证该第一指令ori实现效果

    我们会继续上传新书<自己写CPU>(未公布),今天是12片,四篇 书名又之前的<自己动手写处理器>改为<自己动手写CPU> 4.3 验证OpenMIPS实现效果 4 ...

  3. 【软件使用技巧】PL/SQL Developer实现双击table询

    二手plsql都知道,在表名默认双击[开展/关闭]. 习惯了MySql Workbench要么Sqlserver Management Studio无法适应其他管理工具. 直接在溶液: Tools - ...

  4. 运行safari提示:无法启动此程序,因为计算机中丢失 QTCF.dll

    解决办法: 1.去百度搜索“QTCF.dll”,找到一个靠谱的下载地址获取到该dll文件: 2.将文件放到 安装目录:Safari\Apple Application Support 下边.

  5. 设计Kafka的High Level Consumer

    原文:https://cwiki.apache.org/confluence/display/KAFKA/Consumer+Group+Example 为什么使用High Level Consumer ...

  6. Android使用开发WebView战斗技能

    转载请注明出处:http://blog.csdn.net/allen315410/article/details/44619181 前段时间做项目的时候.在项目中用了WebView组件,遇到了一些问题 ...

  7. SIGPIPE并产生一个信号处理

    阅读TCP某物,知道server并关闭sockfd当写两次,会产生SIGPIPE信号,假如不治疗,默认将挂起server 弄个小样本试验: #include <unistd.h> #inc ...

  8. js实现鼠标拖拽div-------Day44

    假设去问这样一个问题"你认为鼠标操作简单,还是键盘操作简单",相信会有多数人都会回答鼠标吧,毕竟键盘button那么多,假设手小了或者手法不规范了,太easy出问题了,也对操作的速 ...

  9. nodejs http静态服务器

    使用nodejs写的很简单的静态服务器,没有做cluster处理,没有做缓存处理,不支持访问文件夹,功能只有一个,就是获取到文件后再返回文件内容. var fs = require('fs'); va ...

  10. 写自己的第二级处理器(3)——Verilog HDL行为语句

    我们会继续上传新书<自己动手写处理器>(未公布),今天是第七章,我每星期试试4 2.6 Verilog HDL行为语句 2.6.1 过程语句 Verilog定义的模块一般包含有过程语句,过 ...