Python数据预处理—归一化,标准化,正则化
归一化 (Normalization):
属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。常用的最小最大规范化方法(x-min(x))/(max(x)-min(x))
1、对于方差非常小的属性可以增强其稳定性。2、维持稀疏矩阵中为0的条目
>>> X_train = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5 , 0. , 1. ],
[ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]]) >>> #将相同的缩放应用到测试集数据中
>>> X_test = np.array([[ -3., -1., 4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5 , 0. , 1.66666667]]) >>> #缩放因子等属性
>>> min_max_scaler.scale_
array([ 0.5 , 0.5 , 0.33...]) >>> min_max_scaler.min_
array([ 0. , 0.5 , 0.33...])
当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:
X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))
X_scaled=X_std/(max-min)+min
标准化(Standardization):
>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
>>> X_scaled = preprocessing.scale(X) >>> X_scaled
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]]) >>>#处理后数据的均值和方差
>>> X_scaled.mean(axis=0)
array([ 0., 0., 0.]) >>> X_scaled.std(axis=0)
array([ 1., 1., 1.])
>>> scaler = preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True) >>> scaler.mean_
array([ 1. ..., 0. ..., 0.33...]) >>> scaler.std_
array([ 0.81..., 0.81..., 1.24...]) >>> scaler.transform(X)
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]]) >>>#可以直接使用训练集对测试集数据进行转换
>>> scaler.transform([[-1., 1., 0.]])
array([[-2.44..., 1.22..., -0.26...]])
正则化:
p-范数的计算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p
>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2') >>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])
>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2') >>>
>>> normalizer.transform(X)
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]]) >>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])
参考:
Python数据预处理—归一化,标准化,正则化的更多相关文章
- 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- 【原】关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- 使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并除以其方差.得到的结果是,对于每个属 ...
- [Scikit-Learn] - 数据预处理 - 归一化/标准化/正则化
reference: http://www.cnblogs.com/chaosimple/p/4153167.html 一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/ ...
- Python数据预处理:机器学习、人工智能通用技术(1)
Python数据预处理:机器学习.人工智能通用技术 白宁超 2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不 ...
- Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)
关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...
- python data analysis | python数据预处理(基于scikit-learn模块)
原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...
- 数据预处理:标准化(Standardization)
注:本文是人工智能研究网的学习笔记 常用的数据预处理方式 Standardization, or mean removal and variance scaling Normalization: sc ...
- python数据预处理for knn
机器学习实战 一书中第20页数据预处理,从文本中解析数据的程序. import numpy as np def dataPreProcessing(fileName): with open(fileN ...
随机推荐
- springMVC3学习(四)--访问静态文件如js,jpg,css
如果你的DispatcherServlet拦截的是*.do这样的URL,就不存在访问不到静态资源的问题 如果你的DispatcherServlet拦截了"/"所有的请求,那同时对* ...
- selenium webdriver (python)
selenium webdriver (python) 第一版PDF Posted on 2013-08-30 22:59 虫师 阅读(221) 评论(0) 编辑 收藏 前言 如果你是一位有pytho ...
- (Java 多线程系列)java volatile详解
在前面的文章里面介绍了synchronized关键字的用法,这篇主要介绍volatile关键字的用法. Java语言提供了一种稍弱的同步机制,即volatile变量,用来确保将变量的更新操作通知到其它 ...
- sql 数据库还原脚本 (kill链接+独占
在开发过程中经常会碰到数据库还原,要是sql 连接没完全释放掉,那么还原就会受到阻碍.此脚本就是为了解决这个问题. USE [master] GO /****** Object: StoredProc ...
- 微软必应借PK谷歌突围中国搜索市场
Bing“必应”是微软2009年推出的搜索品牌(http://www.bing.com),它取代的是同门师兄Live Search.进入2013年,在国内及好莱坞的多部大片里面,我都看到了Bing搜索 ...
- 学习Machine Leaning In Action(四):逻辑回归
第一眼看到逻辑回归(Logistic Regression)这个词时,脑海中没有任何概念,读了几页后,发现这非常类似于神经网络中单个神经元的分类方法. 书中逻辑回归的思想是用一个超平面将数据集分为两部 ...
- 【C语言】字符串模块
一.字符串简介 * 在Java中,一个字符串可以用String类型来存储 String s = "MJ"; C语言中没有String这种类型.其实字符串就是字符序列,由多个字符组成 ...
- 简述java程序中的main方法
简述main方法: 在java语言程序编写时都会涉及到一个main方法,它的格式为: public static void main(String[] args)(一般必须这么定义,这是java规范) ...
- Ubuntu16 64位安装steam, 并解决无法启动的问题
直接用crtl+shift打开终端,运行下面的命令. sudo add-apt-repository multiverse sudo apt update sudo apt install steam ...
- Sipdroid实现SIP(二): 呼叫请求
INVITE 许多介绍sip的文章没有介绍以下几点细节: 重传, Timer A, B Transaction的有限状态机, 记录当前Transactin的进展情况 与INVITE消息相关的行为(Cl ...