Python数据预处理—归一化,标准化,正则化
归一化 (Normalization):
属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。常用的最小最大规范化方法(x-min(x))/(max(x)-min(x))
1、对于方差非常小的属性可以增强其稳定性。2、维持稀疏矩阵中为0的条目
>>> X_train = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5 , 0. , 1. ],
[ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]]) >>> #将相同的缩放应用到测试集数据中
>>> X_test = np.array([[ -3., -1., 4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5 , 0. , 1.66666667]]) >>> #缩放因子等属性
>>> min_max_scaler.scale_
array([ 0.5 , 0.5 , 0.33...]) >>> min_max_scaler.min_
array([ 0. , 0.5 , 0.33...])
当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:
X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))
X_scaled=X_std/(max-min)+min
标准化(Standardization):
>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
>>> X_scaled = preprocessing.scale(X) >>> X_scaled
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]]) >>>#处理后数据的均值和方差
>>> X_scaled.mean(axis=0)
array([ 0., 0., 0.]) >>> X_scaled.std(axis=0)
array([ 1., 1., 1.])
>>> scaler = preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True) >>> scaler.mean_
array([ 1. ..., 0. ..., 0.33...]) >>> scaler.std_
array([ 0.81..., 0.81..., 1.24...]) >>> scaler.transform(X)
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]]) >>>#可以直接使用训练集对测试集数据进行转换
>>> scaler.transform([[-1., 1., 0.]])
array([[-2.44..., 1.22..., -0.26...]])
正则化:
p-范数的计算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p
>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2') >>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])
>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2') >>>
>>> normalizer.transform(X)
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]]) >>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])
参考:
Python数据预处理—归一化,标准化,正则化的更多相关文章
- 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- 【原】关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...
- 使用sklearn进行数据预处理 —— 归一化/标准化/正则化
一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std 计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并除以其方差.得到的结果是,对于每个属 ...
- [Scikit-Learn] - 数据预处理 - 归一化/标准化/正则化
reference: http://www.cnblogs.com/chaosimple/p/4153167.html 一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/ ...
- Python数据预处理:机器学习、人工智能通用技术(1)
Python数据预处理:机器学习.人工智能通用技术 白宁超 2018年12月24日17:28:26 摘要:大数据技术与我们日常生活越来越紧密,要做大数据,首要解决数据问题.原始数据存在大量不完整.不 ...
- Python数据预处理(sklearn.preprocessing)—归一化(MinMaxScaler),标准化(StandardScaler),正则化(Normalizer, normalize)
关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常 ...
- python data analysis | python数据预处理(基于scikit-learn模块)
原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Fe ...
- 数据预处理:标准化(Standardization)
注:本文是人工智能研究网的学习笔记 常用的数据预处理方式 Standardization, or mean removal and variance scaling Normalization: sc ...
- python数据预处理for knn
机器学习实战 一书中第20页数据预处理,从文本中解析数据的程序. import numpy as np def dataPreProcessing(fileName): with open(fileN ...
随机推荐
- 关于MEF
MEF(Managed Extensibility Framework)是.NET Framework 4.0一个重要的库,Visual Studio 2010 Code Editor的扩展支持也是基 ...
- 判断0-N之间出现1的次数
Console.WriteLine("请输入截止数字?退出请输入y"); string input = Console.ReadLine(); int n = Convert.To ...
- Django入门实践(一)
Django入门实践(一) Django编程思路+入门 认识Django有一个多月了,我觉得学习Django应该先理清它的编程思路.它是典型的MVC框架(在Django里也称MTV),我觉得Djang ...
- echarts 某省下钻某市地图
因为最近工作需要,接触到了highcharts 与echarts ,对比了一下,目前公司系统用的是highcharts的图表插件,就不想再去用echarts的图标插件了,奈何highcharts地图对 ...
- jquery实现调用webservice
1.webservice端 using System; using System.Collections.Generic; using System.Web; using System.Web.Ser ...
- 给Activity切换加入动画
在startActivity或finish()后,调用overridePendingTransition方法,可以加入动画效果.例如: 使用Android自带的淡入淡出:android.R.anim. ...
- ASP.NET发送电子邮件源码示例
using System.Collections.Generic; using System.Text; using System.Net; using System.Net.Mail; try { ...
- struts升级到最高版本后遇到的问题。关于actionmessage传递问题。
Struts2升级到最新版本遇到的一些问题 首先是更换对应的jar,如asm.common.ongl.struts等等.更换后发现系统启动不了,按照网上的介绍,先后又更新了slf4j-log4j12- ...
- AngularJS 跨站请求- jsonp请求
今天写东西的时候遇到了 一种情况 ,因为用的不是自己公司人员写的接口 ,而我要写的东西是抓别的网页上的接口 所以出现了 一下这种情况 这是我的请求: 我在浏览器模板赋值的时候发现赋值成功了, 在浏览器 ...
- [JAVA] 学java必看书籍
<java编程思想>,<Effective Java>,<JVM虚拟机规范> <Java核心技术> <Java Web开发技术大全& ...