【题解】SDOI2008莎拉公主的困惑
挺有趣的恩:洛谷P2155
在纸上打打草稿,写出n!个数,从先往后,遇到不互质的就筛掉——发现一个奇妙的性质!:筛掉的次数、顺序好像是周期性出现的呢~
而且更加妙妙的是,好像还是m!一轮..那么因为n!一定能被m!整除,所以问题转变为:(n!\m! - 有多少个循环节)*(φ(m))。
接下来,φ(m) = m!*(1 - 1/p1)*(1 - 1/p2)...任务就只剩下打出阶乘表&逆元啦。离线的处理会快很多。
#include <bits/stdc++.h>
using namespace std;
#define maxn 10000050
#define ll long long
#define int long long
int maxx, now = , P, T, tot, inv[maxn], ans[], pri[maxn],fac_a[maxn], fac_b[maxn], fac_c[maxn];
bool is_prime[maxn];
struct query
{
int n, m, id, pri;
}Q[]; int read()
{
int x = ;
char c;
c = getchar();
while(c < '' || c > '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} bool cmp1(query a, query b)
{
return a.m < b.m;
} int Get_Pri(int n)
{
for(int i = ; i <= n; i ++)
{
if(!is_prime[i])
{
pri[++ tot] = i;
while(now <= T && pri[tot] > Q[now].m)
{
Q[now].pri = tot - ;
now ++;
}
}
while(now <= T && i == n)
{
Q[now].pri = tot;
now ++;
}
for(int j = ; j <= tot; j ++)
{
if(i * pri[j] > n) break;
is_prime[i * pri[j]] = ;
if(!(i % pri[j])) break;
}
}
} int Get_fac(int n)
{
fac_a[] = fac_a[] = fac_b[] = fac_b[] = fac_c[] = fac_c[] = ;
inv[] = inv[] = ;
for(int i = ; i <= n; i ++)
{
fac_a[i] = (fac_a[i - ] * i) % P;
inv[i] = ((P - P / i) * inv[P % i]) % P;
}
for(int i = ; i <= tot; i ++)
{
fac_b[i] = inv[pri[i]];
fac_b[i] = (fac_b[i] * fac_b[i - ]) % P;
fac_c[i] = pri[i] - ;
fac_c[i] = (fac_c[i] * fac_c[i - ]) % P;
}
} signed main()
{
T = read(), P = read();
for(int i = ; i <= T; i ++)
{
Q[i].n = read(), Q[i].m = read(), Q[i].id = i;
maxx = max(maxx, max(Q[i].n, Q[i].m));
}
sort(Q + , Q + + T, cmp1);
Get_Pri(maxx);
Get_fac(maxx);
for(int i = ; i <= T; i ++)
ans[Q[i].id] = ((fac_a[Q[i].n] * fac_b[Q[i].pri]) % P * fac_c[Q[i].pri]) % P;
for(int i = ; i <= T; i ++)
printf("%lld\n", ans[i]);
return ;
}
【题解】SDOI2008莎拉公主的困惑的更多相关文章
- 【bzoj题解】2186 莎拉公主的困惑
题目传送门. 题意:求\([1,n!]\)中与\(m!\)互质的数的个数,对质数\(R\)取模,\(n\geq m\). 答案应该等于\(\frac{n!}{m!}\phi(m!)=\frac{n!} ...
- [BZOJ 2186][SDOI 2008] 莎拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 4519 Solved: 1560[Submit][S ...
- 莎拉公主的困惑(bzoj 2186)
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
- 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 洛咕 P2155 [SDOI2008]沙拉公主的困惑
洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
随机推荐
- rhel7-NFS服务搭建
检查服务: [root@localhost ~]# systemctl status nfs● nfs-server.service - NFS server and services Loade ...
- Java OOP——第三章 多态
1.多态:(polymorphism): 是具有表现多种形态能力的特征: (专业化的说法:)同一个实现接口(引用类型),使用不同的实例而执行不同的操作 指一个引用(类型)在不同情况下的多种状态.也可以 ...
- es6几个新增语法的使用----数组
//数组的累加方法 let arr=[1,2,3]; let sum=arr.reduce((prev,cur)=>{ return prev+cur; }) console.log(sum)/ ...
- MySql指令的执行顺序
1:From 2:On 3:Join 4:Where 5:Group by 5.1:函数 6:Having 7:Select 8:Distinct 9:Order by
- vue入门笔记
Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.Vue 的核心库只关注视图层,不仅易于上手,还便于与 ...
- mysql中tinyint、smallint、mediumint,int 和bigint 的区别
1:字节的定义:字节(Byte):字节是通过网络传输信息(或在硬盘或内存中存储信息)的单位. 一个英文字母(不分大小写)占一个字节的空间,一个中文汉字占两个字节的空间 2.在mysql中一个汉字占三个 ...
- MFC接收ShellExecute多个参数
在应用程序开发过程中,我们经常需要带参数启动另一个执行程序,如何传递多个参数,如何解析多个参数呢? 传参数 传递参数可使用ShellExecute函数,示例如下: ShellExecute(NUL ...
- c# string.format和tostring()
字符 说明 示例 输出 C 货币 string.Format("{0:C3}", 2) $2.000 D 十进制 string.Format("{0:D3}", ...
- RHCE7认证学习笔记17——KickStart安装系统
一.自动化安装系统工具 1.Cobbler 另一个自动化安装工具: 2.Kickstart 二.使用kickstart自动化安装系统 服务器安装的软件: 1.dhcp服务 [root@lin ...
- hadoop中的方法的作用
/* * InputFormat类: * * 作用: * 1.设置输入的形式; * 2.将输入的数据按照相应的形式分割成一个个spilts后再进一步拆分成<key,value> ...