【bzoj3362/3363/3364/3365】[Usaco2004 Feb]树上问题杂烩 并查集/树的直径/LCA/树的点分治
题目描述
输入
输出
样例输入T1 7 6 样例输出T1 13 |
样例输入T2 7 6 样例输出T2 52 |
样例输入T3 7 6 样例输出T3 13 |
样例输入T4 7 6 样例输出T4 5 |
题解
各种树上问题处理方法
题目中描述“每对农场间有且仅有一条路径”,所以这个图其实就是一棵树,也就是说m是没用的。
另外路径方向除了T1都没用。。。
T1:将询问离线,按时间排序,用带权并查集维护每个点的祖先以及该点到祖先的水平距离和竖直距离即可。
#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 40010
using namespace std;
struct data
{
int x , y , p , pos;
}q[10010];
int a[N] , b[N] , cx[N] , cy[N] , f[N] , dx[N] , dy[N] , ans[10010];
char str[5];
bool cmp(data a , data b)
{
return a.p < b.p;
}
int find(int x)
{
if(x == f[x]) return x;
int t = f[x];
f[x] = find(t);
dx[x] += dx[t];
dy[x] += dy[t];
return f[x];
}
int main()
{
int n , i , t , m , ta , tb;
scanf("%d%*d" , &n);
for(i = 1 ; i < n ; i ++ )
{
scanf("%d%d%d%s" , &a[i] , &b[i] , &t , str);
if(str[0] == 'E') cx[i] = t;
if(str[0] == 'S') cy[i] = t;
if(str[0] == 'W') cx[i] = -t;
if(str[0] == 'N') cy[i] = -t;
}
scanf("%d" , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%d" , &q[i].x , &q[i].y , &q[i].p) , q[i].pos = i;;
sort(q + 1 , q + m + 1 , cmp);
for(i = 1 ; i <= n ; i ++ ) f[i] = i;
for(t = i = 1 ; i <= m ; i ++ )
{
while(t <= q[i].p)
{
ta = find(a[t]) , tb = find(b[t]);
if(ta != tb) f[ta] = tb , dx[ta] = dx[b[t]] + cx[t] - dx[a[t]] , dy[ta] = dy[b[t]] + cy[t] - dy[a[t]];
t ++ ;
}
ta = find(q[i].x) , tb = find(q[i].y);
ans[q[i].pos] = (ta == tb ? abs(dx[q[i].x] - dx[q[i].y]) + abs(dy[q[i].x] - dy[q[i].y]) : -1);
}
for(i = 1 ; i <= m ; i ++ ) printf("%d\n" , ans[i]);
return 0;
}
T2:求树的直径可以使用一遍树形dp,但这里懒了直接两遍dp求deep,即先找到任意一个deep最大的点,再以这个点为根求出直径。
#include <cstdio>
#include <cstring>
#define N 40010
int head[N] , to[N << 1] , len[N << 1] , next[N << 1] , cnt , deep[N];
void add(int x , int y , int z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x , int fa)
{
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa)
deep[to[i]] = deep[x] + len[i] , dfs(to[i] , x);
}
int main()
{
int n , i , x , y , z , k;
scanf("%d%*d" , &n);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d%d%*s" , &x , &y , &z) , add(x , y , z) , add(y , x , z);
dfs(1 , 0);
for(k = 0 , i = 1 ; i <= n ; i ++ ) if(deep[i] > deep[k]) k = i;
memset(deep , 0 , sizeof(deep)) , dfs(k , 0);
for(k = 0 , i = 1 ; i <= n ; i ++ ) if(deep[i] > k) k = deep[i];
printf("%d\n" , k);
return 0;
}
T3:倍增LCA模板题,注意细节。
#include <cstdio>
#include <algorithm>
#define N 40010
using namespace std;
int head[N] , to[N << 1] , len[N << 1] , next[N << 1] , cnt , fa[N][18] , deep[N] , dis[N][18] , log[N];
void add(int x , int y , int z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
for(i = 1 ; i <= log[deep[x]] ; i ++ )
fa[x][i] = fa[fa[x][i - 1]][i - 1] , dis[x][i] = dis[x][i - 1] + dis[fa[x][i - 1]][i - 1];
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[x][0])
fa[to[i]][0] = x , dis[to[i]][0] = len[i] , deep[to[i]] = deep[x] + 1 , dfs(to[i]);
}
int query(int x , int y)
{
int i , ans = 0;
if(deep[x] <= deep[y]) swap(x , y);
for(i = log[deep[x] - deep[y]] ; ~i ; i -- )
if(deep[x] - (1 << i) >= deep[y])
ans += dis[x][i] , x = fa[x][i];
if(x == y) return ans;
for(i = log[deep[x]] ; ~i ; i -- )
if(fa[x][i] != fa[y][i])
ans += dis[x][i] + dis[y][i] , x = fa[x][i] , y = fa[y][i];
return ans + dis[x][0] + dis[y][0];
}
int main()
{
int n , i , x , y , z , k;
scanf("%d%*d" , &n);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d%d%*s" , &x , &y , &z) , add(x , y , z) , add(y , x , z);
for(i = 2 ; i <= n ; i ++ ) log[i] = log[i >> 1] + 1;
dfs(1);
scanf("%d" , &k);
while(k -- ) scanf("%d%d" , &x , &y) , printf("%d\n" , query(x , y));
return 0;
}
T4:树的点分治,几乎同 poj1741 ,还是单组测试数据,直接无视掉m和方向之后按照那道题做就好了。
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 40010
using namespace std;
int m , head[N] , to[N << 1] , len[N << 1] , next[N << 1] , cnt , si[N] , deep[N] , root , vis[N] , f[N] , sn , d[N] , tot , ans;
void add(int x , int y , int z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
void getroot(int x , int fa)
{
f[x] = 0 , si[x] = 1;
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa && !vis[to[i]])
getroot(to[i] , x) , si[x] += si[to[i]] , f[x] = max(f[x] , si[to[i]]);
f[x] = max(f[x] , sn - si[x]);
if(f[root] > f[x]) root = x;
}
void getdeep(int x , int fa)
{
d[++tot] = deep[x];
int i;
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa && !vis[to[i]])
deep[to[i]] = deep[x] + len[i] , getdeep(to[i] , x);
}
int calc(int x)
{
tot = 0 , getdeep(x , 0) , sort(d + 1 , d + tot + 1);
int i = 1 , j = tot , sum = 0;
while(i < j)
{
if(d[i] + d[j] <= m) sum += j - i , i ++ ;
else j -- ;
}
return sum;
}
void dfs(int x)
{
deep[x] = 0 , vis[x] = 1 , ans += calc(x);
int i;
for(i = head[x] ; i ; i = next[i])
if(!vis[to[i]])
deep[to[i]] = len[i] , ans -= calc(to[i]) , sn = si[to[i]] , root = 0 , getroot(to[i] , 0) , dfs(root);
}
int main()
{
int n , i , x , y , z;
scanf("%d%*d" , &n);
for(i = 1 ; i < n ; i ++ )
scanf("%d%d%d%*s" , &x , &y , &z) , add(x , y , z) , add(y , x , z);
scanf("%d" , &m);
f[0] = 0x7fffffff , sn = n;
getroot(1 , 0) , dfs(root);
printf("%d\n" , ans);
return 0;
}
【bzoj3362/3363/3364/3365】[Usaco2004 Feb]树上问题杂烩 并查集/树的直径/LCA/树的点分治的更多相关文章
- HDU 2545 树上战争 (并查集+YY)
题意:给一棵树,如果树上的某个节点被某个人占据,则它的所有儿子都被占据,lxh和pfz初始时分别站在两个节点上,lxh总是先移动 ,谁当前所在的点被另一个人占据,他就输了比赛,问谁能获胜 比较有意思的 ...
- hdu 2545 树上战争(并查集)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2545 树上战争 Time Limit: 10000/4000 MS (Java/Others) ...
- BZOJ 3365: [Usaco2004 Feb]Distance Statistics 路程统计
Description 一棵树,统计距离不大于 \(k\) 的点对个数. Sol 点分治. 发现自己快把点分治忘干净了... 找重心使所有儿子的最大值尽量小,然后每次处理全部子树,再减去每个子树的贡献 ...
- bzoj 3365 [Usaco2004 Feb]Distance Statistics 路程统计(点分治,单调)
[题意] 求树上长度不超过k的点对数目. [思路] 和 Tree 一样一样的. 就是最后统计的时候别忘把根加上. [代码] #include<set> #include<cmath& ...
- 【刷题】BZOJ 3365 [Usaco2004 Feb]Distance Statistics 路程统计
Description 在得知了自己农场的完整地图后(地图形式如前三题所述),约翰又有了新的问题.他提供 一个整数K(1≤K≤109),希望你输出有多少对农场之间的距离是不超过K的. Input 第1 ...
- bzoj 3365: [Usaco2004 Feb]Distance Statistics 路程统计【容斥原理+点分治】
统计在一个root下的两个子树,每个子树都和前面的运算一下再加进去对于这种需要排序的运算很麻烦,所以考虑先不去同子树内点对的算出合法点对个数,然后减去每一棵子树内的合法点对(它们实际上是不合法的,相当 ...
- USACO2004 cube stacking /// 带权并查集 oj1302
题目大意: 以N ( 1 ≤ N ≤ 30,000 )个堆栈开始,每个堆栈包含一个单独的立方体.执行P(1≤ P ≤100,000)的操作. 有两种类型的操作:移动和计数. *在移动操作中,将 包含方 ...
- BZOJ4699 树上的最短路(最短路径+dfs序+线段树+堆+并查集)
首先一般化的将下水道和塌陷看成一个东西.注意到在从源点出发的所有需要使用某条下水道的最短路径中,该下水道只会被使用一次,该下水道第一个被访问的点相同,且只会在第一个访问的点使用该下水道.这个第一个访问 ...
- 带权并查集【bzoj3362】: [Usaco2004 Feb]Navigation Nightmare 导航噩梦
[bzoj]3362: [Usaco2004 Feb]Navigation Nightmare 导航噩梦 农夫约翰有N(2≤N≤40000)个农场,标号1到N,M(2≤M≤40000)条的不同的垂 ...
随机推荐
- conda 安装 graph-tool, 无需编译
1. 添加以下channels到~/.condarc $ conda config --add channels conda-forge $ conda config --add channels o ...
- 利用JQUERY实现多个AJAX请求等待
利用JQUERY实现多个AJAX请求等待 li {list-style-type:decimal;}.wiz-editor-body ol.wiz-list-level2 > li {list- ...
- 04 shell编程之循环语句
Shell编程之循环语句 学习目标: 掌握for循环语句编程 掌握while循环语句编程 目录结构: For循环语句 l 读取不同的变量值,以逐个执行同一组命令 l For语句结构 for 变量名 ...
- 通过swagger下载的文件乱码解决方法,求解
这里的数据显示 点击Download Templates下载之后是显示一个response流都不是一个xlsx文件 这个是由什么原因造成的,求解?
- 【ospf-链路验证】
根据项目需求搭建好拓扑图 配置RT1的环回口IP和G0/0/0IP地址 开启RT1接口ospf认证,配置接口密码为H3C 配置RT1的ospf区域 同理 开启RT2接口ospf认证,配置接口密码为g0 ...
- YII2.0学习二 安装adminlte 后台模板
控制台切换到安装目录wwwroot/shanghai/ 修改一下composer镜像地址:composer 使用中国镜像 运行 composer require dmstr/yii2-adminlte ...
- 分享一个根据具体的日期判断星座的PHP函数
其实原理很简单,也就是把所有的星座月份日期范围存储到一个数组中,然后根据日期判断属于哪个范围,这样就得到是哪个星座了. 下面的这个函数写的比较精炼,可以参考一下 function constellat ...
- ActivityStream是什么?什么是Feed流?
我先说说feed流吧,它就是社交网站中用户活动信息流,例如用户写了博客.发了照片.评论了什么等等.Facebook叫newsFeed.推特叫TimeLineFeed.ActivityStream是这些 ...
- shell重温---基础篇(shell变量&字符串以及git GUI运行shell脚本方式)
既然是基础篇那肯定是需要对shell的各种需要注意的基本点进行说明了.接下来就是show time... shell呢,是一个用C语言编写的应用程序,是用户使用linux的桥梁.所以呢,他既是一 ...
- JVM内存管理机制和垃圾回收机制
JVM内存管理机制和垃圾回收机制 JVM结构 图片描述: java源码编译成class文件 class文件通过类加载器加载到内存 其中方法区存放的是运行时的常量.静态变量.类信息等,被所有线程共享 堆 ...