Happy 2006
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 11458   Accepted: 4001

Description

Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.

Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.

Input

The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).

Output

Output the K-th element in a single line.

Sample Input

2006 1
2006 2
2006 3

Sample Output

1
3
5
思路:若a与m互素,那么a+t*m(t>=1)与m 也互素,否则不互素.设小于m且与m互素的数有n个,分别为a(0),a(1),a(2),...,a(n-1).那么第n+1个为a0+m,第n+2个为a(1)+m...第k个为m*(k-1)+a((k-1)%n);
#include <cstdio>
using namespace std;
const int MAXN=;
int m,k;
int relative[MAXN],top;
int gcd(int a,int b)
{
if(b==) return a;
else return gcd(b,a%b);
}
void sieve()
{
for(int i=;i<=m;i++)
{
if(gcd(i,m)==)
{
relative[top++]=i;
}
}
}
int main()
{
while(scanf("%d%d",&m,&k)!=EOF)
{
top=;
sieve();
int n=(k-)/top;
int z=(k-)%top;
int res=n*m+relative[z];
printf("%d\n",res);
}
return ;
}

容斥原理+二分.

容斥原理介绍:http://baike.baidu.com/link?url=H0UEe3zE2jUT7Ree_tycNyXcLYRWH4v25KpCZ3DOcx2HN0jaMYB3rJNF45SFs_EDxWo01C0LCz1rrh-_CG4On_

n/p表示1~n中是p倍数的数的个数。求1~m中与n互素的数的个数。先将n进行质因数分解,然后通过位运算枚举所有质因数的组合。若选了奇数个质因数ans+=m/质因数之积,否则ans-=m/质因数之积。然后二分枚举m的范围,确定k.

#include <cstdio>
#include <vector>
using namespace std;
typedef long long LL;
LL sieve(LL n,LL m)
{
vector<LL> divisor;
for(LL i=;i*i<=n;i++)
{
if(n%i==)
{
divisor.push_back(i);
while(n%i==) n/=i;
}
}
if(n>) divisor.push_back(n);
LL ans=;
for(LL mark=;mark<(<<divisor.size());mark++)
{
LL mul=;
LL odd=;
for(LL i=;i<divisor.size();i++)
{
if(mark&(<<i))
{
odd++;
mul*=divisor[i];
}
}
LL cnt=m/mul;
if(odd&) ans+=cnt;
else ans-=cnt;
}
return m-ans;
}
LL n,k;
int main()
{
while(scanf("%lld%lld",&n,&k)!=EOF)
{
LL left=;
LL right=1LL<<;
while(right-left>)
{
LL mid=(left+right)>>;
LL cnt=sieve(n,mid);
if(cnt>=k)
{
right=mid;
}
else
{
left=mid;
}
}
printf("%lld\n",right);
}
return ;
}

Java版:

import java.util.Scanner;
import java.util.ArrayList;
public class Main{
Scanner in = new Scanner(System.in);
long m, k;
long sieve(long n, long m)
{
ArrayList<Long> divisor = new ArrayList();
for(long i = ; i * i <= n; i++)
{
if(n % i == )
{
divisor.add(i);
while(n % i == ) n /= i;
}
}
if(n > ) divisor.add(n);
long ret = ;
for(long mark = , size = divisor.size(); mark < ( << size); mark++)
{
long odd = ;
long mul = ;
for(int i = ; i < size; i++)
{
if((mark & (1L << i)) != )
{
odd++;
mul *= divisor.get(i);
}
}
if(odd % == )
{
ret += m / mul;
}
else
{
ret -= m / mul;
}
}
return m - ret;
}
Main()
{
while(in.hasNext())
{
m = in.nextLong();
k = in.nextLong();
long left = , right = 1L << ;
while(right > left)
{
long mid = (right + left) >> ;
long s = sieve(m, mid);
if(s >= k)
{
right = mid;
}
else
{
left = mid + ;
}
}
System.out.println(right);
}
}
public static void main(String[] args){ new Main();
}
}

POJ2773(容斥原理)的更多相关文章

  1. poj2773 —— 二分 + 容斥原理 + 唯一分解定理

    题目链接:http://poj.org/problem?id=2773 Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submi ...

  2. POJ2773 Happy 2006【容斥原理】

    题目链接: http://poj.org/problem?id=2773 题目大意: 给你两个整数N和K.找到第k个与N互素的数(互素的数从小到大排列).当中 (1 <= m <= 100 ...

  3. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  4. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  5. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  6. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  7. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  8. HDU5838 Mountain(状压DP + 容斥原理)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5838 Description Zhu found a map which is a N∗M ...

  9. 【BZOJ-2669】局部极小值 状压DP + 容斥原理

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 561  Solved: 293[Submit][Status ...

随机推荐

  1. HashSet,TreeSet和LinkedHashSet的区别

    1. Set接口 Set不允许包含相同的元素,如果试图把两个相同元素加入同一个集合中,add方法返回false. Set判断两个对象相同不是使用==运算符,而是根据equals方法.也就是说,只要两个 ...

  2. 【iOS和HTML 5交互】iOS中加载html5调用html方法和修改html5内容

    近期项目开发中用到了这方面的技术了,那我们一起来看看. 1.利用webView控件加载本地html5或者网络上html5 2.设置控制器为webView的代理,遵守协议 3.实现代理方法webView ...

  3. 适配iOS9问题汇总

    iOS 9适配过程中出现的问题,收集的链接资料供大家学习分享. http://wiki.mob.com/ios9-对sharesdk的影响(适配ios-9必读)/ http://www.cocoach ...

  4. ubuntu+vm+ftp

    为了将windows下的文件传到linux中去,使用FZ来做服务器,在linux中进入ftp状态获取. 1.下载FileZilla服务器,在windows下安装就行了(试过汉化插件,用了就报错,所以还 ...

  5. Oracle配置文件

    在oracle安装目录$HOME/network/admin下,,经常看到sqlnet.ora tnsnames.ora listener.ora这三个文件,除了tnsnames.ora,其他两个文件 ...

  6. POJ 2431 贪心+优先队列

    题意:一辆卡车距离重点L,现有油量P,卡车每前行1米耗费油量1,途中有一些加油站,问最少在几个加油站加油可使卡车到达终点或到达不了终点.   思路:运用优先队列,将能走到的加油站的油量加入优先队列中, ...

  7. python的pexpect详解

    Pexpect 是一个用来启动子程序并对其进行自动控制的纯 Python 模块. Pexpect 可以用来和像 ssh.ftp.passwd.telnet 等命令行程序进行自动交互.继第一部分< ...

  8. Shell中数学计算/运算

    shell中的赋值和操作默认都是字符串处理. 1)使用let(只能进行整数运算)var=1let "var+=1"echo $var输出结果为2 注意:a)let几乎支持所有的运算 ...

  9. 【bzoj1036】树的统计[ZJOI2008]树链剖分+线段树

    题目传送门:1036: [ZJOI2008]树的统计Count 这道题是我第一次打树剖的板子,虽然代码有点长,但是“打起来很爽”,而且整道题只花了不到1.5h+,还是一遍过样例!一次提交AC!(难道前 ...

  10. 元素 "context:component-scan" 的前缀 "context" 未绑定的解决方案

    在动态web项目(Dynamic Web Project)中,使用SpringMVC框架,新建Spring的配置文件springmvc.xml,添加扫描控制器 <context:componen ...