Count the number of distinct sequences a1, a2, ..., an (1 ≤ ai) consisting of positive integers such that gcd(a1, a2, ..., an) = x and . As this number could be large, print the answer modulo 109 + 7.

gcd here means the greatest common divisor.

Input

The only line contains two positive integers x and y (1 ≤ x, y ≤ 109).

Output

Print the number of such sequences modulo 109 + 7.

Examples

Input
3 9
Output
3
Input
5 8
Output
0

Note

There are three suitable sequences in the first test: (3, 3, 3), (3, 6), (6, 3).

There are no suitable sequences in the second test.

题意:N个未知数,他们的GCD是X,和是Y,问方案数。

思路:显然我们枚举GCD=x,然后就是(Y/X)/x-1个隔板,2^隔板。前面加莫比乌斯系数mu[x/X]即可。

#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int Mod=1e9+;
int p[],cnt,ans,X,Y;
int qpow(int a,int x){
int res=; while(x){
if(x&) res=(ll)res*a%Mod;
a=(ll)a*a%Mod; x>>=;
}return res;
}
void dfs(int pos,int s,int opt)
{
if(pos>cnt) { ans=((ans+opt*qpow(,Y/s-))%Mod+Mod)%Mod; return ;}
dfs(pos+,s,opt); dfs(pos+,s*p[pos],-opt);
}
int main()
{
scanf("%d%d",&X,&Y);
if(Y%X!=) return puts(""),;
Y/=X; int tp=Y;
for(int i=;i<=tp/i;i++){
if(tp%i==) {
p[++cnt]=i;
while(tp%i==) tp/=i;
}
}
if(tp>) p[++cnt]=tp;
dfs(,,);
printf("%d\n",ans);
return ;
}

CodeForces - 900D: Unusual Sequences (容斥&莫比乌斯&组合数学)的更多相关文章

  1. cf900D. Unusual Sequences(容斥 莫比乌斯反演)

    题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显 ...

  2. Codeforces 900D Unusual Sequences 容斥原理

    题目链接:900D  Unusual Sequences 题意: 给出两个数N,M.让你求数列(和为M,gcd为N)的个数. 题解: 首先,比较容易发现的是M%N如果不为零,那么一定不能构成这样的序列 ...

  3. 【CF900D】Unusual Sequences 容斥(莫比乌斯反演)

    [CF900D]Unusual Sequences 题意:定义正整数序列$a_1,a_2...a_n$是合法的,当且仅当$gcd(a_1,a_2...a_n)=x$且$a_1+a_2+...+a_n= ...

  4. CodeForces 900D Unusual Sequences

    题目链接: https://codeforces.com/contest/900/problem/D 题意 假设有distinct 正整数序列{a1,a2,,,an},满足gcd(a1, a2, .. ...

  5. Codeforces 900D Unusual Sequences:记忆化搜索

    题目链接:http://codeforces.com/problemset/problem/900/D 题意: 给定x,y,问你有多少个数列a满足gcd(a[i]) = x 且 ∑(a[i]) = y ...

  6. 【BZOJ3294】放棋子(动态规划,容斥,组合数学)

    [BZOJ3294]放棋子(动态规划,容斥,组合数学) 题面 BZOJ 洛谷 题解 如果某一行某一列被某一种颜色给占了,那么在考虑其他行的时候可以直接把这些行和这些列给丢掉. 那么我们就可以写出一个\ ...

  7. Codeforces 803F Coprime Subsequences (容斥)

    Link:http://codeforces.com/contest/803/problem/F 题意:给n个数字,求有多少个GCD为1的子序列. 题解:容斥!比赛时能写出来真是炒鸡开森啊! num[ ...

  8. Codeforces 100548F - Color (组合数+容斥)

    题目链接:http://codeforces.com/gym/100548/attachments 有n个物品 m种颜色,要求你只用k种颜色,且相邻物品的颜色不能相同,问你有多少种方案. 从m种颜色选 ...

  9. 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数

    Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...

随机推荐

  1. [转]c#中从string数组转换到int数组

    string[] input = { "1", "2", "3", "4", "5", " ...

  2. 【渗透神器系列】Fiddler (收藏)

    发表于 2017-04-27   |   分类于 安全工具   |     |   阅读次数 593 人世起起落落 左手边上演的华灯初上 右手边是繁华落幕的星点余光 本篇作为渗透神器系列第二篇,将介绍 ...

  3. iOS 几种常用的 crash log 崩溃信息调试方法

    前言:crash log 对 定位崩溃问题 ,并且不容易复现,尤其是及时对appstore 上正在运营的 app 的迭代改进来说 非常重要. 1 crash两种情况 1.1 测试环境下 追踪bug 1 ...

  4. Hibernate一对多、多对一关联

    一对多.多对一关联:在多方加外键 示例:Group(一方)和User(多方),一个Group可以有多个User,每个User只能属于一个Group   多对一单向关联 在User(多方)中建Group ...

  5. Linux的压缩命令(tar,gzip,zip)

    打包和压缩.打包是指将一大堆文件或目录变成一个总的文件:压缩则是将一个大的文件通过一些压缩算法变成一个小文件. 这源于Linux中很多压缩程序只能针对一个文件进行压缩,这样当你想要压缩一大堆文件时,你 ...

  6. Cocos2d-x项目移植到WP8系列之一:前传

    原文链接: http://www.cnblogs.com/zouzf/p/3969993.html 许久没动笔了,随想一直都有动笔的想法,但拖来拖去,归根到底还是一个懒字吧 .发现人的惰性真是太强大了 ...

  7. Android系统--Binder系统具体框架分析(一)

    Binder系统具体框架分析(一) 一.Binder系统核心框架 1. IPC:Inter-Process Communication, 进程间通信 A进程将数据原原本本发送B进程,主要负责进程间数据 ...

  8. RHCE学习笔记 管理1 (第六章 第七章)

    第六章 利用linux 文件系统权限文件访问 1.linux文件系统权限 文件的权限分为:  rwx  读/写/执行 ls -l  /home   查看/home下文件 ls -ld /home   ...

  9. Maven配置一键部署远程Tomcat

    1. 首先需要配置远程Tomcat的访问权限(设置访问用户名密码) http://www.cnblogs.com/liuchao102/p/5519345.html 2. 配置pom.xml 添加to ...

  10. SpringCloud-路由网关(Zuul)

    在微服务架构中,需要几个基础的服务治理组件,包括服务注册与发现.服务消费.负载均衡.断路器.只能路由.配置管理等,由这几个基础组件相互协作,共同组建了一个简单的微服务系统. 在Spring Cloud ...