题解:点击

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <math.h>
using namespace std;
const double eps = 1e-6;
const int MAXN = 100010;
const double INF = 1e20;
struct Point
{
double x,y;
};
double dist(Point a,Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
Point p[MAXN];
Point tmpt[MAXN];
bool cmpxy(Point a,Point b)
{
if(a.x != b.x)return a.x < b.x;
else return a.y < b.y;
}
bool cmpy(Point a,Point b)
{
return a.y < b.y;
}
double Closest_Pair(int left,int right)
{
double d = INF;
if(left == right)return d;
if(left + 1 == right)
return dist(p[left],p[right]);
int mid = (left+right)/2;
double d1 = Closest_Pair(left,mid);
double d2 = Closest_Pair(mid+1,right);
d = min(d1,d2);
int k = 0;
for(int i = left;i <= right;i++)
{
if(fabs(p[mid].x - p[i].x) <= d)
tmpt[k++] = p[i];
}
sort(tmpt,tmpt+k,cmpy);
for(int i = 0;i <k;i++)
{
for(int j = i+1;j < k && tmpt[j].y - tmpt[i].y < d;j++)
{
d = min(d,dist(tmpt[i],tmpt[j]));
}
}
return d;
}
int main()
{
int n;
while(scanf("%d",&n)==1 && n)
{
for(int i = 0;i < n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
sort(p,p+n,cmpxy);
printf("%.2lf\n",Closest_Pair(0,n-1)/2);
}
return 0;
}

平面最近点对(HDU 1007)的更多相关文章

  1. hdu 1007 Quoit Design(平面最近点对)

    题意:求平面最近点对之间的距离 解:首先可以想到枚举的方法,枚举i,枚举j算点i和点j之间的距离,时间复杂度O(n2). 如果采用分治的思想,如果我们知道左半边点对答案d1,和右半边点的答案d2,如何 ...

  2. HDU 1007 Quoit Design【计算几何/分治/最近点对】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  3. 【HDU 1007】 Quoit Design

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1007 [算法] 答案为平面最近点对距离除以2 [代码] #include <algorith ...

  4. kd树解平面最近点对

    早上起来头有点疼,突然就想到能不能用kd树解平面最近点对问题,就找了道题试了一下,结果可以,虽然效率不高,但还是AC了~ 题目链接:http://acm.hdu.edu.cn/showproblem. ...

  5. HDU-4631 Sad Love Story 平面最近点对

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4631 数据是随机的,没有极端数据,所以可以分段考虑,最小值是一个单调不增的函数,然后每次分治算平面最近 ...

  6. HDU 1007 Quoit Design

    传送门 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem Des ...

  7. 计算几何 平面最近点对 nlogn分治算法 求平面中距离最近的两点

    平面最近点对,即平面中距离最近的两点 分治算法: int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对 { double ans; //an ...

  8. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  9. HDU1007--Quoit Design(平面最近点对)

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

  10. Vijos 1012 清帝之惑之雍正 平面最近点对(分治)

    背景 雍正帝胤祯,生于康熙十七年(1678)是康熙的第四子.康熙61年,45岁的胤祯继承帝位,在位13年,死于圆明园.庙号世宗. 胤祯是在康乾盛世前期--康熙末年社会出现停滞的形式下登上历史舞台的.复 ...

随机推荐

  1. Redis集群的安装和使用

  2. JSON Web Tokens介绍

    转载请标明出处: http://blog.csdn.net/forezp/article/details/72804324 本文出自方志朋的博客 ##什么是JWT 这篇文章选择性翻译于https:// ...

  3. Xcode 新建js文件

    Xcode 新建js文件

  4. export default 和 export的使用方式

    注意:1.export default 向外暴露的成员,可以使用任意的变量来接收 2.在一个模块中 ; export default 只允许向外暴露一次 3.在一个模块中 ; 可以同时使用 expor ...

  5. Redis4.0新特性

    redis 4.0 新特性 Redis 4.0在2017年7月发布为GA.包含几个重大改进:更好的复制(PSYNC2),线程DEL / FLUSH,混合RDB + AOF格式,活动内存碎片整理,内存使 ...

  6. 03 shell编程之case语句与函数

    本文所有内容均来自当年博主当年学习笔记,若有不足欢迎指正 Shell编程之case语句与函数 学习目标: 掌握case语句编程 掌握shell函数的使用 目录结构: Case语句 Case语句的作用 ...

  7. 如何用 npm 同时执行两条监听命令

    在日常项目中启动项目 需要启动项目可能需要不止一条命令 这就很麻烦 要开启两个bash 很麻烦 终于找到了比较好的解决方案 例如我的: npm run dev //启动项目项目 npm run jso ...

  8. css表格

    今天写某个平台的前端数据展示 主要使用表格展示 正好复习总结一下css的表格 首先说说thead.tbody.tfoot <thead></thead> <tbody&g ...

  9. C# 多条件拼接sql

    #region 多条件搜索时,使用List集合来拼接条件(拼接Sql) StringBuilder sql = new StringBuilder("select * from PhoneN ...

  10. PHP一些常用魔术方法

    魔术方法                          调用方法                                     作用__set                   有两个 ...