LOJ#2230. 「BJOI2014」大融合
题目描述
小强要在$N$个孤立的星球上建立起一套通信系统。这套通信系统就是连接$N$个点的一个树。这个树的边是一条一条添加上去的。
在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量。
例如,在上图中,现在一共有五条边。其中,$(3,8)$这条边的负载是$6$,因为有六条简单路径$2-3-8,\ 2-3-8-7,\ 3-8,\ 3-8-7,\ 4-3-8,\ 4-3-8-7$路过了$(3,8)$。
现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的询问。
输入格式
第一行包含两个整数$N,Q$,表示星球的数量和操作的数量。星球从$1$开始编号。
接下来的$Q$行,每行是如下两种格式之一:
A x y
表示在$x$和$y$之间连一条边。保证之前$x$和$y$是不联通的。Q x y
表示询问$(x,y)$这条边上的负载。保证$x$和$y$之间有一条边。
输出格式
对每个查询操作,输出被查询的边的负载。
样例
样例输入
8 6
A 2 3
A 3 4
A 3 8
A 8 7
A 6 5
Q 3 8
样例输出
6
数据范围与提示
对于所有数据,$1 \leq N,Q \leq 100000$。
题解Here!
$LCT$大法好!
维护虚树中每个节点的虚子节点个数。
连边时注意:不是$makeroot$,是$split$。(坑了我好久。。。)
还有$access$时维护一下即可。
最后答案就是:
$$\text{x的虚子节点个数}\times(\text{y的虚子节点个数}-\text{x的虚子节点个数})$$
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#define MAXN 100010
using namespace std;
int n,m;
struct node{
int f,v,s,flag,son[2];
}a[MAXN];
inline int read(){
int date=0,w=1;char c=0;
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
return date*w;
}
inline bool isroot(int rt){
return a[a[rt].f].son[0]!=rt&&a[a[rt].f].son[1]!=rt;
}
inline void pushup(int rt){
if(!rt)return;
a[rt].s=a[a[rt].son[0]].s+a[a[rt].son[1]].s+a[rt].v+1;
}
inline void pushdown(int rt){
if(!rt||!a[rt].flag)return;
a[a[rt].son[0]].flag^=1;a[a[rt].son[1]].flag^=1;a[rt].flag^=1;
swap(a[rt].son[0],a[rt].son[1]);
}
inline void turn(int rt){
int x=a[rt].f,y=a[x].f,k=a[x].son[0]==rt?1:0;
if(!isroot(x)){
if(a[y].son[0]==x)a[y].son[0]=rt;
else a[y].son[1]=rt;
}
a[rt].f=y;a[x].f=rt;a[a[rt].son[k]].f=x;
a[x].son[k^1]=a[rt].son[k];a[rt].son[k]=x;
pushup(x);pushup(rt);
}
void splay(int rt){
int top=0,stack[MAXN];
stack[++top]=rt;
for(int i=rt;!isroot(i);i=a[i].f)stack[++top]=a[i].f;
while(top)pushdown(stack[top--]);
while(!isroot(rt)){
int x=a[rt].f,y=a[x].f;
if(!isroot(x)){
if((a[y].son[0]==x)^(a[x].son[0]==rt))turn(rt);
else turn(x);
}
turn(rt);
}
}
void access(int rt){
for(int i=0;rt;i=rt,rt=a[rt].f){
splay(rt);
a[rt].v+=a[a[rt].son[1]].s-a[i].s;
a[rt].son[1]=i;
pushup(rt);
}
}
inline void makeroot(int rt){access(rt);splay(rt);a[rt].flag^=1;}
inline void split(int x,int y){makeroot(x);access(y);splay(y);}
inline void link(int x,int y){
split(x,y);
a[x].f=y;
a[y].v+=a[x].s;
pushup(y);
}
void work(){
char ch[2];
int x,y;
n=read();m=read();
for(int i=1;i<=n;i++)a[i].s=1;
while(m--){
scanf("%s",ch);x=read();y=read();
if(ch[0]=='A')link(x,y);
if(ch[0]=='Q'){
split(x,y);
printf("%lld\n",(long long)a[x].s*(a[y].s-a[x].s));
}
}
}
int main(){
work();
return 0;
}
LOJ#2230. 「BJOI2014」大融合的更多相关文章
- Loj 2230. 「BJOI2014」大融合 (LCT 维护子树信息)
链接:https://loj.ac/problem/2230 思路: 设立siz数组保存虚点信息,sum表示总信息 维护子树信息link操作和access操作需要进行一些改动 可参考博客:https: ...
- 【LOJ】#2230. 「BJOI2014」大融合
题解 我现在真是太特么老年了 一写数据结构就颓废,难受 这题就是用lct维护子树 ???lct怎么维护子树 这样想,我们给每个点记录虚边所在的子树大小,只发生在Access和link的时候 这样的话我 ...
- loj2230 「BJOI2014」大融合
LCT裸题 我LCT学傻了这题明显可以树剖我不会树剖了 本来的siz是Splay上的子树和,并没有什么用. 所以每个点维护虚子树和和子树和 虚子树和即虚边连接的子树和,且只有在access和link操 ...
- @loj - 2092@ 「ZJOI2016」大森林
目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Y 家里有一个大森林,里面有 n 棵树,编号从 1 到 n. ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
- loj#2009.「SCOI2015」小凸玩密室
题目链接 loj#2009. 「SCOI2015」小凸玩密室 题解 树高不会很高<=20 点亮灯泡x,点亮x的一个子树,再点亮x另外的子树, 然后回到x的父节点,点亮父节点之后再点亮父节点的其他 ...
随机推荐
- prototype 用法
prototype使得js面向对象使用了prototype之后,使用它里面的属性或者函数 需要new出一个对象才可以使用.否则不使用prototype,直接向对象注入 function Person( ...
- MVC之ActionFilterAttribute自定义属性
ActionFilterAttribute里有OnActionExecuting方法,跟Controller一样, 同是抽象实现了IActionFilter接口. // 登录认证特性 public c ...
- nginx利用lua实现nginx反向代理proxy_store缓存文件自删除
标题有点绕口.我尽量把关键词都贴进去.之前因为自己的nginx安装了ngx_lua模块,但是又需要引入 但是安装luafilesystem又需要先安装luarocks,比较繁琐.这里就想记录一下安装过 ...
- 浅谈一致性hash
相信做过互联网应用的都知道,如何很好的做到横向扩展,其实是个蛮难的话题,缓存可横向扩展,如果采用简单的取模,余数方式的部署,基本是无法做到后期的扩展的,数据迁移及分布都是问题,举个例子: 假设采用取模 ...
- 李洪强-HEAD 和nil和NULL
- [转]jsonp详解
jsonp详解 json相信大家都用的多,jsonp我就一直没有机会用到,但也经常看到,只知道是“用来跨域的”,一直不知道具体是个什么东西.今天总算搞明白了.下面一步步来搞清楚jsonp是个什么玩意. ...
- html 标签 链接
<a href="http://www.baidu.com">百度</a> <a href="#here">here< ...
- python统计订单走势
#coding=utf-8 import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotl ...
- nginx 中location和root,你确定真的明白他们关系?
最近公司开发新项目,web server使用nginx,趁周末小小的研究了一下,一不小心踩了个坑吧,一直404 not found!!!!!当时卡在location和root中,但是网上却比较少聊这方 ...
- jq中写PHP
var id="$defaultId"; if(!id){ $("#tag_url").addClass("div_display_none" ...