洛谷——P3152 正整数序列
P3152 正整数序列
题目描述
kkk制造了一个序列,这个序列里的数全是由正整数构成的。你别认为她的数列很神奇——其实就是1, 2, …, n而已。当然,n是给定的。kkk的同学lzn认为0是一个好数字(看上去很饱满有木有),所以他机智的趁kkk不在把这个序列全变成了0(其实只是准备窝)~
可是kkk突然回来了!于是lzn的计划破灭了。但是他并不甘心,就和kkk说:我可以每次从这个序列中选取一些数,然后一起减去一个相同的数(当然也是正整数)。然后经过有(wu)限(qiong)次这样的操作后,这个序列就可以全变成0。
kkk当然不信咯,于是lzn就求出了他最少要做几次这样的操作,才能使这个序列全部变成0。
输入输出格式
输入格式:
一个正整数n
输出格式:
最少操作次数
如果无解输出-1
输入输出样例
说明
1<=n<=10^9
找规律,我们可以发现 1 2~3 4~7 8~15 16~31
依次对应的数为 1 2 3 4 5
可以看到上面的数对应的为2的n次方内得数,因此我们的结果将会是log n+1(下取整)
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int n,ans; int read() { ,f=; char ch=getchar(); ;ch=getchar();} +ch-',ch=getchar(); return x*f; } int main() { n=read(); while(n) { n>>=; ans++; } printf("%d",ans); ; }
洛谷——P3152 正整数序列的更多相关文章
- 洛谷 P3152 正整数序列
P3152 正整数序列 题目描述 kkk制造了一个序列,这个序列里的数全是由正整数构成的.你别认为她的数列很神奇——其实就是1, 2, …, n而已.当然,n是给定的.kkk的同学lzn认为0是一个好 ...
- 洛谷 P1628 合并序列
洛谷 P1628 合并序列 题目传送门 题目描述 有N个单词和字符串T,按字典序输出以字符串T为前缀的所有单词. 输入格式 输入文件第一行包含一个正整数N: 接下来N行,每行一个单词,长度不超过100 ...
- 洛谷 P5470 - [NOI2019] 序列(反悔贪心)
洛谷题面传送门 好几天没写题解了,写篇题解意思一下(大雾 考虑反悔贪心,首先我们考虑取出 \(a,b\) 序列中最大的 \(k\) 个数,但这样并不一定满足交集 \(\ge L\) 的限制,因此我们需 ...
- BZOJ 1500 洛谷2042维护序列题解
BZ链接 洛谷链接 这道题真是丧心病狂.... 应该很容易就可以看出做法,但是写代码写的....... 思路很简单,用一个平衡树维护一下所有的操作就好了,重点讲解一下代码的细节 首先如果按照常规写法的 ...
- 洛谷 P4272 - [CTSC2009]序列变换(堆)
洛谷题面传送门 u1s1 在我完成这篇题解之前,全网总共两篇题解,一篇使用的平衡树,一篇使用的就是这篇题解讲解的这个做法,但特判掉了一个点,把特判去掉在 BZOJ 上会 WA 一个点. 两篇题解都异常 ...
- 洛谷——P1795 无穷的序列_NOI导刊2010提高(05)
P1795 无穷的序列_NOI导刊2010提高(05) 题目描述 有一个无穷序列如下: 110100100010000100000… 请你找出这个无穷序列中指定位置上的数字 输入输出格式 输入格式: ...
- 洛谷 P1732 [TJOI2011]序列
P1732 [TJOI2011]序列 题目描述 一指数列A={a1, a2, …, an},根据数列A计算数列B={b1, b2, …, bn},其中: 求\sum\limits^n_{i=1} b_ ...
- 洛谷 P1795 无穷的序列_NOI导刊2010提高(05)
P1795 无穷的序列_NOI导刊2010提高(05) 题目描述 有一个无穷序列如下: 110100100010000100000… 请你找出这个无穷序列中指定位置上的数字 输入输出格式 输入格式: ...
- luogu P3152 正整数序列
题目描述 kkk制造了一个序列,这个序列里的数全是由正整数构成的.你别认为她的数列很神奇--其实就是1, 2, -, n而已.当然,n是给定的.kkk的同学lzn认为0是一个好数字(看上去很饱满有木有 ...
随机推荐
- [codeforces] 633C Spy Syndrome 2
原题 Trie树+dp 首先,我们可以简单的想到一种dp方式,就是如果这一段可以匹配并且可以与前一段接上,那么更新dp[i]为当前字符串的编号,然后倒推就可以得到答案. 但是,显然我们不能O(m)比较 ...
- CMD批处理把txt文本中的每行写入一个新文件,第一列作文件名
需求 现在有一个文件格式如图 ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17001 89.84 8.87 1.29 -0.0 0.0 68.99 0.0 0. ...
- 一个JavaScript反射使用的例子
反射机制指的是程序在运行时能够获取自身的信息.例如一个对象能够在运行时知道自己有哪些方法和属性.在JavaScript中有一个很方便的语法来实现反射,即for(…in…)语句,其语法如下: 1 for ...
- 如何记录MySQL执行过的SQL语句
很多时候,我们需要知道 MySQL 执行过哪些 SQL 语句,比如 MySQL 被注入后,需要知道造成什么伤害等等.只要有 SQL 语句的记录,就能知道情况并作出对策.服务器是可以开启 MySQL 的 ...
- POJ3189:Steady Cow Assignment(二分+二分图多重匹配)
Steady Cow Assignment Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7482 Accepted: ...
- 安卓sdk安装教程
http://blog.csdn.net/love4399/article/details/77164500
- 怎么利用idea自带的工具,不需要 重启tomcat或则其他服务,js代码自动生效
idea中有一个工具:可以直接upload,能让你修改的界面直接可以看到,不需要重启服务. 依次点击的按钮如下: 点击进入的界面这个填的只是一个示例,在各位的电脑上肯定不行,大家依据实际情况填写.
- Java之戳中痛点 - (1)易变业务使用脚本语言编写
脚本语言的3大特征: 1.灵活:脚本语言一般是动态类型,可以不声明变量类型直接使用,也可以在运行期改变类型:2.便捷:脚本语言是解释性语言,在运行期变更非常方便,而不用重启服务3.简单:脚本语言语法比 ...
- Android布局优化思考
一.关于RelativeLayout和LinearLayout的使用 由源码可以知道,RelativeLayout需要对其子View进行两次measure过程,而LinearLayout只需一次mea ...
- CMOS与BIOS
BIOS与CMOS的区别 : 1. 所谓BIOS,实际上就是微机的基本输入输出系统(Basic Input-Output System),其内容集成在微机主板上的一个ROM芯片上,主要保存着有关微机系 ...