#447 Div2 D

题意

给一棵完全二叉树,每条边有权值为两点间的距离,每次询问 \(x, h\) ,从结点 \(x\) 出发到某一结点的最短路的距离 \(d\) 如果小于 \(h\) ,则答案加上 \(h - d\) ,考虑所有结点并输出答案。

分析

通过建树过程可以发现这是一棵完全二叉树,也就是说树很矮。

可以预处理这棵树,对于每一个结点,我们可以计算出以这个结点为根结点的子树中的所有结点到当前子树的根结点的距离,从根结点向下 DFS 即可,然后自下而上合并,类似归并排序合并的过程。再预处理下前缀和,这样就很容易求得子树中有多少结点到根结点的距离小于 \(h\) ,向上走 \(log(n)\) 次一定可以到根结点。

完全二叉树 很矮!祖先结点很少!很多情况都可以遍历(暴力)祖先结点!

code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e6 + 10;
int f, s, mx;
int n, m, a[N], l[N], r[N];
vector<int> G[N];
vector<ll> S[N];
void mergeUp(int rt, int cl, int cr) {
int i = 0, j = 0;
while(i < cl || j < cr) {
if(i == cl) G[rt].push_back(r[j++]);
else if(j == cr) G[rt].push_back(l[i++]);
else {
if(l[i] < r[j]) G[rt].push_back(l[i++]);
else G[rt].push_back(r[j++]);
}
}
ll sum = 0;
for(int i = 0; i < G[rt].size(); i++) {
sum += G[rt][i];
S[rt].push_back(sum);
}
}
void build(int rt) {
if(rt >= s - mx + 1) return;
build(rt * 2);
build(rt * 2 + 1);
int cl = 0, cr = 0;
if(rt * 2 <= n) for(int i = 0; i < G[rt * 2].size(); i++) {
l[cl++] = G[rt * 2][i] + a[rt * 2];
}
if(rt * 2 + 1 <= n) for(int i = 0; i < G[rt * 2 + 1].size(); i++) {
r[cr++] = G[rt * 2 + 1][i] + a[rt * 2 + 1];
}
if(cl + cr > 0) mergeUp(rt, cl, cr);
}
int main() {
scanf("%d%d", &n, &m);
s = 1, mx = 1, f = 0;
while(s < n) {
mx *= 2;
s += mx;
f++;
}
for(int i = 1; i < n; i++) {
int x;
scanf("%d", &x);
a[i + 1] = x;
G[i].push_back(0);
}
G[n].push_back(0);
build(1);
while(m--) {
int now, h, pre = -1;
scanf("%d%d", &now, &h);
ll ans = h;
while(now) {
if(now != 1 && a[now] < h) ans += h - a[now];
if(pre == -1) {
int pos = lower_bound(G[now].begin(), G[now].end(), h) - G[now].begin() - 1;
if(pos > 0) ans += 1LL * pos * h - S[now][pos];
} else {
if(now * 2 == pre && now * 2 + 1 <= n) {
int nxt = now * 2 + 1;
int pos = lower_bound(G[nxt].begin(), G[nxt].end(), h - a[nxt]) - G[nxt].begin() - 1;
if(pos > 0) ans += 1LL * pos * (h - a[nxt]) - S[nxt][pos];
if(a[nxt] < h) ans += h - a[nxt];
} else if(now * 2 + 1 == pre && now * 2 <= n) {
int nxt = now * 2;
int pos = lower_bound(G[nxt].begin(), G[nxt].end(), h - a[nxt]) - G[nxt].begin() - 1;
if(pos > 0) ans += 1LL * pos * (h - a[nxt]) - S[nxt][pos];
if(a[nxt] < h) ans += h - a[nxt];
}
}
h -= a[now];
pre = now;
now /= 2;
}
cout << ans << endl;
}
return 0;
}

Codeforces #447 Div2 D的更多相关文章

  1. Codeforces #447 Div2 E

    #447 Div2 E 题意 给出一个由有向边构成的图,每条边上有蘑菇,假设有 \(n\) 个蘑菇,那么第一次走过这条边可以获得 \(n\) 个蘑菇,第二次 \(n-1\),第三次 \(n-1-2\) ...

  2. Codeforces #180 div2 C Parity Game

    // Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...

  3. Codeforces #541 (Div2) - E. String Multiplication(动态规划)

    Problem   Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...

  4. Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)

    Problem   Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...

  5. Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)

    Problem   Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...

  6. Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)

    Problem   Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...

  7. 【Codeforces #312 div2 A】Lala Land and Apple Trees

    # [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ...

  8. codeforces 447 A-E div2 补题

    A DZY Loves Hash 水题 #include<iostream> #include<cstdio> #include<cstdlib> #include ...

  9. Codeforces #263 div2 解题报告

    比赛链接:http://codeforces.com/contest/462 这次比赛的时候,刚刚注冊的时候非常想好好的做一下,可是网上喝了个小酒之后.也就迷迷糊糊地看了题目,做了几题.一觉醒来发现r ...

随机推荐

  1. CENSORING

    CENSORING 题目描述 FJ为它的奶牛订阅了很多杂志,balabala.......,其中有一些奶牛不宜的东西(比如如何煮牛排). FJ将杂志中所有的文章提取出来组成一个长度最多为10^5的字符 ...

  2. POJ1087:A Plug for UNIX(最大流)

    A Plug for UNIX 题目链接:https://vjudge.net/problem/POJ-1087 Description: You are in charge of setting u ...

  3. linux 端口号、进程id、杀进程、查询tcp的连接(各种状态的)

    sudo netstat -antupkill -s 9 50713netstat -n | grep 61616netstat -n | awk '/^tcp/ {++S[$NF]} END {fo ...

  4. PHP 抽象类,接口,抽象方法,静态方法

    1.Abstract class(抽象类) 抽象类是指在 class 前加了 abstract 关键字且存在抽象方法(在类方法 function 关键字前加了 abstract 关键字)的类. 抽象类 ...

  5. 数据结构之DFS与BFS

    深度搜索(DFS) and  广度搜索(BFS) 代码如下: #include "stdafx.h" #include<iostream> #include<st ...

  6. MySQL rpm 版本安装

     准备: [root@localhost moudles]# ls MySQL-client-5.6.36-1.linux_glibc2.5.x86_64.rpm MySQL-server-5.6.3 ...

  7. 动态规划&字符串:最长公共子串

    还是直接上转移方程: 动规只能解决O(n^2)的最长公共子串问题 使用后缀数组或者SAM可以高效地解决这个问题 所以,对于这个问题,动规的代码就不给出了 直接给出SAM的实现,也为以后学习SAM打下一 ...

  8. [USACO1.3]虫洞

    Luogu链接 题目描述 农夫约翰爱好在周末进行高能物理实验的结果却适得其反,导致N个虫洞在农场上(2<=N<=12,n是偶数),每个在农场二维地图的一个不同点. 根据他的计算,约翰知道他 ...

  9. [转]华 使用npm安装一些包失败了的看过来(npm国内镜像介绍)

     发布于 5 年前  作者 wppept  275957 次浏览  最后一次编辑是 1 年前 这个也是网上搜的,亲自试过,非常好用! 镜像使用方法(三种办法任意一种都能解决问题,建议使用第三种,将配置 ...

  10. python面向对象进阶(上)

    一 .isinstance(obj,cls)和issubclass(sub,super) (1)isinstance(obj,cls)检查对象obj是否是类 cls 的对象,返回True和Flase ...