【题目链接】 http://codeforces.com/problemset/problem/786/A

【题目大意】

  有两个人,每个人有一个数集,里面有一些数,现在有一个环,有个棋子放在1,
  有个不确定位置的终点,两个人轮流从自己的数集中选择一个数,作为这个棋子移动的步数
  问终点在不同位置,不同人先手的时候谁能赢,或者游戏陷入循环

【题解】 

  我们从st_0_0=st_1_0=0开始倒着推导,
  如果一个状态是必败态,那么它的前继节点一定是必胜态
  如果一个点的所有后继都是必胜态,那么这个节点一定是必败态。
  每当一个点被其必胜后继推导到,那么其度数减一,当度数为0时则表示其为必败态
  我们根据这些结论倒着推导每个状态的答案并记录,最后按顺序输出即可。

【代码】

#include <cstdio>
#include <vector>
#include <cstring>
#include <string>
using namespace std;
const int N=100010;
int n,sg[2][N],d[2][N],k,x;
vector<int> g[2];
int dfs(int k,int pos,int v){
int &ret=sg[k][pos];
if(~ret)return ret;
ret=v;
if(v==0){
for(int i=0;i<g[k^1].size();i++){
int x=g[k^1][i];
int j=(pos+n-x)%n;
if(j==0)continue;
dfs(k^1,j,1);
}
}else{
for(int i=0;i<g[k^1].size();i++){
int x=g[k^1][i];
int j=(pos+n-x)%n;
if(j==0)continue;
if(--d[k^1][j]==0)dfs(k^1,j,0);
}
}return ret;
}
int main(){
scanf("%d",&n);
for(int i=0;i<2;i++){
scanf("%d",&k);
g[i].clear();
while(k--){
scanf("%d",&x);
g[i].push_back(x);
}for(int j=1;j<n;j++)d[i][j]=g[i].size();
}memset(sg,-1,sizeof(sg));
dfs(0,0,0);
dfs(1,0,0);
string s[3]={"Loop","Lose","Win"};
for(int k=0;k<2;k++){
for(int i=1;i<n;i++){
printf("%s%c",s[sg[k][i]+1].c_str(),i+1==n?'\n':' ');
}
}return 0;
}

Codeforces 786A Berzerk(博弈论)的更多相关文章

  1. [刷题]Codeforces 786A - Berzerk

    http://codeforces.com/problemset/problem/786/A Description Rick and Morty are playing their own vers ...

  2. cf786a

    title: CodeForces 786A Berzerk data: 2018-3-3 10:29:40 tags: 博弈论 bfs 无限 with draw copyright: true ca ...

  3. ACM 博弈(难)题练习 (第一弹)

    第二弹: 套路&&经验总结: 1. N堆***的游戏,一般可以打表找SG函数的规律.比如CodeForces 603C 2.看起来是单轮的游戏,实际上可能拆分成一些独立的子游戏.比如C ...

  4. Codeforces Round #406 (Div. 1) A. Berzerk 记忆化搜索

    A. Berzerk 题目连接: http://codeforces.com/contest/786/problem/A Description Rick and Morty are playing ...

  5. [Codeforces 1191D] Tokitsukaze, CSL and Stone Game(博弈论)

    [Codeforces 1191D] Tokitsukaze, CSL and Stone Game(博弈论) 题面 有n堆石子,两个人轮流取石子,一次只能从某堆里取一颗.如果某个人取的时候已经没有石 ...

  6. codeforces 1451D,一道有趣的博弈论问题

    大家好,欢迎来到codeforces专题. 今天选择的问题是Contest 1451场的D题,这是一道有趣简单的伪博弈论问题,全场通过的人有3203人.难度不太高,依旧以思维为主,坑不多,非常友好. ...

  7. Codeforces 1411G - No Game No Life(博弈论+生成函数+FWTxor)

    Codeforces 题面传送门 & 洛谷题面传送门 一道肥肠套路的题目. 首先这题涉及博弈论.注意到这里每一个棋子的移动方式都是独立的,因此可以考虑 SG 定理.具体来说,我们先求出每个棋子 ...

  8. Codeforces 1458E - Nim Shortcuts(博弈论+BIT)

    Codeforces 题目传送门 & 洛谷题目传送门 首先看到这样的题我们不妨从最特殊的情况入手,再逐渐推广到一般的情况.考虑如果没有特殊点的情况,我们将每个可能的局面看作一个点 \((a,b ...

  9. Codeforces 549C. The Game Of Parity[博弈论]

    C. The Game Of Parity time limit per test 1 second memory limit per test 256 megabytes input standar ...

随机推荐

  1. webstorm vue cli 热更新不起作用解决办法

    在网上搜到的:原因是(webstorm默认保存在临时文件)  连接  1.打开设置 2.把 System Settings => Synchornization => 最后一项勾去掉

  2. java禁止实例化的工具类

    public class Q { /** * @param args */ public static void main(String[] args) { new Person() } } clas ...

  3. bzoj5091 [Lydsy1711月赛]摘苹果 概率题

    [Lydsy1711月赛]摘苹果 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 174  Solved: 135[Submit][Status][Dis ...

  4. Oracle查询字段内容为非数字的记录

    今天在一张3W多记录的表里查非数字的异常数据~数据库太水,记录一发,因为2.5使用人员误输入为2..5.... select t.routecardlist_id,trim(translate(RTR ...

  5. [Python]简单的外星人入侵游戏

    alien_invasion.py: import sys import pygame from setting import Settings from ship import Ship impor ...

  6. iOS 全局变量设置的几种方式~

    在iOS开发过程中关于全局变量的几个方法 1. 在APPDelegate中声明并初始化全局变量.AppDelegate可以在整个应用程序中调用,在其他页面中可以使用代码段获取AppDelegate的全 ...

  7. 【BZOJ3675】【APIO2014】序列分割 [斜率优化DP]

    序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 小H最近迷上了一个分隔序列的游戏. ...

  8. [bzoj3238][Ahoi2013]差异——后缀自动机

    Brief Description Algorithm Design 下面给出后缀自动机的一个性质: 两个子串的最长公共后缀,位于这两个串对应的状态在parent树上的lca状态上.并且最长公共后缀的 ...

  9. 【Git】GitHub之多人开发一个项目

    首先我们要简单知道github跟Git的区别.git是版本控制工具, github是一个面向开源及私有软件项目的托管平台,也是程序员交流的地方. 接下来就开始讲怎么多人一起开发. 首先我们先拥有git ...

  10. DDD——让天下没有难调的程序

    https://www.linuxidc.com/Linux/2016-11/137343.htm DDD全称Data Display Debugger,当我第一次见到它时,它的界面着实让我吃了一惊, ...