[BZOJ5006][LOJ#2290][THUWC2017]随机二分图(概率+状压DP)
题解:https://blog.csdn.net/Vectorxj/article/details/78905660
不是很好理解,对于边(x1,y1)和(x2,y2),可以分“x1或y1已匹配”,“x2或y2已匹配”,“x1,x2,y1,y2均未匹配”三种情况考虑拆边的正确性。
状压的时候,对于当前左边已经匹配的集合,只需要枚举左边已匹配的最后一个是用哪条边匹配的即可,也就是程序里的S<(1<<T)。
不要用顺推,记忆化搜索会忽略一些用不到的状态,所以会快一些。
#include<map>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,mod=,inv2=(mod+)>>,inv4=(mod+)>>;
int n,m,cnt,t,x,y;
struct E{ int S,p,c; E(int _S=,int _p=,int _c=):S(_S),p(_p),c(_c){} }G[N*N<<];
map<int,int>f[<<N]; inline void add(int &x,int y){ x+=y; if (x>=mod) x-=mod; }
int F(int S){
if (!S) return ;
int T0=S>>n,S0=S^(T0<<n);
if (f[S0].count(T0)) return f[S0][T0];
int res=;
rep(i,,cnt){
int T=G[i].S;
if ((T&S)==T && S<(T<<)) add(res,1ll*F(S^T)*G[i].p%mod);
}
return f[S0][T0]=res;
} int main(){
freopen("bzoj5006.in","r",stdin);
freopen("bzoj5006.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,,m){
scanf("%d%d%d",&t,&x,&y);
int S1=(<<(x-))|(<<(y+n-)); G[++cnt]=E(S1,inv2,);
if (t){
scanf("%d%d",&x,&y);
int S2=(<<(x-))|(<<(y+n-)); G[++cnt]=E(S2,inv2,);
if (S1 & S2) continue;
G[++cnt]=E(S1|S2,((t==)?inv4:mod-inv4),);
}
}
printf("%lld\n",(1ll<<n)*F((<<(n*))-)%mod);
return ;
}
[BZOJ5006][LOJ#2290][THUWC2017]随机二分图(概率+状压DP)的更多相关文章
- [思路题][LOJ2290][THUWC2017]随机二分图:状压DP+期望DP
分析 考虑状压DP,令\(f[sta]\)表示已匹配状态是\(sta\)(\(0\)代表已匹配)时完美匹配的期望数量,显然\(f[0]=1\). 一条边出现了不代表它一定在完美匹配内,这也导致很难去直 ...
- P4547 [THUWC2017]随机二分图(状压,期望DP)
期望好题. 发现 \(n\) 非常小,应该要想到状压的. 我们可以先只考虑 0 操作. 最难的还是状态: 我们用 \(S\) 表示左部点有哪些点已经有对应点, \(T\) 表示右部点有哪些点已经有对应 ...
- Luogu4547 THUWC2017 随机二分图 概率、状压DP
传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...
- 【洛谷5492】[PKUWC2018] 随机算法(状压DP)
点此看题面 大致题意: 用随机算法求一张图的最大独立集:每次随机一个排列,从前到后枚举排列中的点,如果当前点加入点集中依然是独立集,就将当前点加入点集中,最终得到的点集就是最大独立集.求这个随机算法的 ...
- Codeforces Round #363 LRU(概率 状压DP)
状压DP: 先不考虑数量k, dp[i]表示状态为i的概率,状态转移方程为dp[i | (1 << j)] += dp[i],最后考虑k, 状态表示中1的数量为k的表示可行解. #incl ...
- NOIP2016提高A组 A题 礼物—概率状压dp
题目描述 夏川的生日就要到了.作为夏川形式上的男朋友,季堂打算给夏川买一些生 日礼物. 商店里一共有n种礼物.夏川每得到一种礼物,就会获得相应喜悦值Wi(每种礼物的喜悦值不能重复获得). 每次,店员会 ...
- loj2540 「PKUWC2018」随机算法 【状压dp】
题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i] ...
- POJ2794 Double Patience[离散概率 状压DP]
Double Patience Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 694 Accepted: 368 Cas ...
- LOJ2540 [PKUWC2018] 随机算法 【状压DP】
题目分析: 听说这题考场上能被$ O(4^n) $的暴力水过,难不成出题人是毕姥爷? 首先思考一个显而易见的$ O(n^2*2^n) $的暴力DP.一般的DP都是考虑最近的加入了哪个点,然后删除后递归 ...
随机推荐
- 【BZOJ 1930】 [Shoi2003]pacman 吃豆豆 最大费用最大流
如果你知道他是网络流的话你就很快会想到一个最大费用最大流的模型,然后你发现可能T,然而你发现你只用增广两次,然后你就开心的打了出来,然后发现被稠密图里spfa的丧病时间复杂度坑了,还是会T.于是我就开 ...
- Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路
首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...
- java Collections.sort()实现List排序的默认方法和自定义方法【转】
1.java提供的默认list排序方法 主要代码: List<String> list = new ArrayList();list.add("刘媛媛"); list. ...
- Maven如何打包本地依赖包
有的jar包,在maven中心库里面是没有的,那么,如何在项目中使用呢? 假设我们需要使用:apache-ant-zip-2.3.jar 将该jar包,放在项目的lib目录,例如: 在pom.xml里 ...
- oracle与mysql的group by语句
之所以去纠那么细节的问题,是因为之前有过一个这样的场景: 有个同学,给了一条数据库的语句给我,问,为啥这样子的语句在oracle语句下执行不了. 1 select * from xx where xx ...
- 转:使用 Nginx Upload Module 实现上传文件功能
普通网站在实现文件上传功能的时候,一般是使用Python,Java等后端程序实现,比较麻烦.Nginx有一个Upload模块,可以非常简单的实现文件上传功能.此模块的原理是先把用户上传的文件保存到临时 ...
- Xcode5根控制器使用xib展示的步骤
#error:Xcode5根控制器使用xib展示,步骤 ⓵取消mainInterface ⓶右击file's owner对xib进行view-view连线,否则: Terminating app du ...
- [Leetcode Week8]Edit Distance
Edit Distance 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/edit-distance/description/ Description ...
- Google Breakpad 之一,跨平台crash 处理上报系统简介
Google Breakpad 之一,跨平台crash 处理上报系统简介 http://blog.csdn.net/wpc320/article/details/8290501 Google Brea ...
- 设计模式之笔记--简单工厂模式(Simple Factory)
简单工厂模式(Simple Factory) 类图 描述 简单工厂: 一个抽象产品类,可以派生多个具体产品类: 一个具体工厂类: 工厂只能创建一个具体产品. 应用场景 汽车接口 public inte ...