One of the tasks students routinely carry out in their mathematics classes is to solve a polynomial equation. It is, given a polynomial, sayX2 - 4X + 1<tex2html_verbatim_mark> , to find its roots (2±)<tex2html_verbatim_mark> .

If the students' task is to find the roots of a given polynomial, the teacher's task is then to find a polynomial that has a given root. Ms. Galsone is an enthusiastic mathematics teacher who is bored with finding solutions of quadratic equations that are as simple as a + b<tex2html_verbatim_mark> . She wanted to make higher-degree equations whose solutions are a little more complicated. As usual in problems in mathematics classes, she wants to maintain all coefficients to be integers and keep the degree of the polynomial as small as possible (provided it has the specified root). Please help her by writing a program that carries out the task of the teacher's side.

You are given a number t<tex2html_verbatim_mark> of the form:

t =  + 

<tex2html_verbatim_mark>

where a<tex2html_verbatim_mark> and b<tex2html_verbatim_mark> are distinct prime numbers, and m<tex2html_verbatim_mark> and n<tex2html_verbatim_mark> are integers greater than 1.

In this problem, you are asked to find t<tex2html_verbatim_mark> 's minimal polynomial on integers, which is the polynomial F(X) = adXd + ad-1Xd-1 + ... a1X +a0<tex2html_verbatim_mark> satisfying the following conditions.

  1. Coefficients a0,..., ad<tex2html_verbatim_mark> are integers and ad > 0<tex2html_verbatim_mark> .
  2. F(t) = 0<tex2html_verbatim_mark> .
  3. The degree d<tex2html_verbatim_mark> is minimum among polynomials satisfying the above two conditions.
  4. F(X)<tex2html_verbatim_mark> is primitive. That is, coefficients a0,..., ad<tex2html_verbatim_mark> have no common divisors greater than one.

For example, the minimal polynomial of  + <tex2html_verbatim_mark> on integers is F(X) = X4 -10X2 + 1<tex2html_verbatim_mark> . Verifying F(t) = 0<tex2html_verbatim_mark> is as simple as the following ( = , = <tex2html_verbatim_mark> ).

F(t) = ( + )4 -10( + )2 + 1
  = ( +4 +6 +4 + ) - 10( +2 + ) + 1
  = 9 + 12 +36 + 8 +4 - 10(3 + 2 + 2) + 1
  = (9 + 36 + 4 - 50 + 1) + (12 + 8 - 20)
  = 0

<tex2html_verbatim_mark>

Verifying that the degree of F(t)<tex2html_verbatim_mark> is in fact minimum is a bit more difficult. Fortunately, under the condition given in this problem, which is that a<tex2html_verbatim_mark> and b<tex2html_verbatim_mark> are distinct prime numbers and m<tex2html_verbatim_mark> and n<tex2html_verbatim_mark> greater than one, the degree of the minimal polynomial is always mn<tex2html_verbatim_mark> . Moreover, it is always monic. That is, the coefficient of its highest-order term ( ad<tex2html_verbatim_mark> ) is one.

Input

The input consists of multiple datasets, each in the following format.

a  m  b  n

<tex2html_verbatim_mark>

This line represents  + <tex2html_verbatim_mark> . The last dataset is followed by a single line consisting of four zeros. Numbers in a single line are separated by a single space.

Every dataset satisfies the following conditions.

  1.  + 4<tex2html_verbatim_mark>
  2. mn20<tex2html_verbatim_mark>
  3. The coefficients of the answer a0,..., ad<tex2html_verbatim_mark> are between (- 231 + 1)<tex2html_verbatim_mark> and (231 - 1)<tex2html_verbatim_mark> , inclusive.

Output

For each dataset, output the coefficients of its minimal polynomial on integers F(X) = adXd + ad-1Xd-1 + ... a1X + a0<tex2html_verbatim_mark> , in the following format.

ad  ad-1 ..  a1  a0

<tex2html_verbatim_mark>

Non-negative integers must be printed without a sign (+ or -). Numbers in a single line must be separated by a single space and no other characters or extra spaces may appear in the output.

3 2 2 2
3 2 2 3
2 2 3 4
31 4 2 3
3 2 2 7
0 0 0 0

Sample Output

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
#define MAXN 25
const double eps = 1e-8;
LL a,m,b,n;
LL C[MAXN][MAXN];
int Hash[MAXN][MAXN],tot;
double A[MAXN][MAXN];
void init()
{
for (int i = 0 ; i <= 20 ; i++)
{
C[i][0] = C[i][i] = 1;
for (int j = 1; j < i ; j++)
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
tot = 0;
for (int i = 0 ; i < m ; i++)
for (int j = 0 ; j < n ; j++)
Hash[i][j] = tot++;
}
void build()
{
memset(A,0,sizeof(A));
A[0][0] = 1;
for (int i = 1; i <= tot ; i++)
{
for (int j = 0 ; j <= i ; j++)
{
int l = j , r = i - j;
double tmp = C[i][l] * pow(a * 1.0,l / m) * pow(b * 1.0,r / n);
l %= m ; r %= n;
A[Hash[l][r]][i] += tmp;
}
}
A[tot][tot] = 1;
A[tot][tot + 1] = 1;
tot++;
}
void print(double x)
{
char s[100];
sprintf(s,"%.0lf",x);
if (strcmp(s,"-0") == 0) printf(" %s",s + 1);
else printf(" %s",s);
}
void gauss()
{
for (int i = 0 ; i < tot ; i++)
{
int r = i;
for (int j = i + 1; j < tot ; j++)
{
if (fabs(A[j][i]) > fabs(A[r][i])) r = j;
}
if (fabs(A[r][i]) < eps) continue;
for (int j = i ; j <= tot ; j++) swap(A[r][j],A[i][j]);
for (int j = 0 ; j < tot ; j++)
{
if (i == j) continue;
if (fabs(A[j][i]) < eps) continue;
double tmp = A[j][i] / A[i][i];
for (int k = i ; k <= tot ; k++)
{
A[j][k] -= tmp * A[i][k];
}
}
}
printf("1");
for (int i = tot - 2; i >= 0; i--)
print(A[i][tot] / A[i][i]);
printf("\n");
}
int main()
{
while(scanf("%lld%lld%lld%lld",&a,&m,&b,&n) != EOF)
{
if (n == 0 && m == 0 && b == 0 && n == 0) break;
init();
build();
gauss();
}
return 0;
}

  

1 0 -10 0 1
1 0 -9 -4 27 -36 -23
1 0 -8 0 18 0 -104 0 1
1 0 0 -8 -93 0 24 -2976 2883 -32 -3720 -23064 -29775
1 0 -21 0 189 0 -945 -4 2835 -252 -5103 -1260 5103 -756 -2183 这里思路比较简单。注意有个负0处理参照了别人了的代码。照着抄的。。
思路就是简单记录a,b的各种次幂组合根据组合数确定系数。最后为0.注意最高项为1;

UVALIVE 3891 The Teacher's Side of Math的更多相关文章

  1. UVALive 6073 Math Magic

                                                  6073 Math MagicYesterday, my teacher taught us about m ...

  2. UVA 1397 - The Teacher&#39;s Side of Math(高斯消元)

    UVA 1397 - The Teacher's Side of Math 题目链接 题意:给定一个x=a1/m+b1/n.求原方程组 思路:因为m*n最多20,全部最高项仅仅有20.然后能够把每一个 ...

  3. Math Magic(完全背包)

    Math Magic Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Sta ...

  4. ZOJ3662:Math Magic(全然背包)

    Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least common m ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. sqlalchemy 学习-- 多表操作

    一对多:一对一 # one -- many class Students(Base): __tablename__ = "students" sid = Column(Intege ...

  7. sqlalchemy 学习--单表操作

    以下所有代码片段都使用了统一的引用,该引用如下: from sqlalchemy import create_engine, ForeignKey from sqlalchemy.ext.declar ...

  8. [转] fitnesse中的Map处理

    http://blog.csdn.net/doubeizhucele/article/details/42263887 fintesse会把!{}标记的变量视为HashTable对象,展现到页面上的将 ...

  9. zoj3662Math Magic

    Math Magic Time Limit: 3 Seconds       Memory Limit: 32768 KB Yesterday, my teacher taught us about ...

随机推荐

  1. Tuxedo 通讯方式解析

    本节根据tuxedo自带samples的例子,让其运行起来.并通过这个例子,深入的理解tuxedo的通讯方式. 进入tuxedo的安装目录,samples目录下自带了一些例子 [root@localh ...

  2. Spring实战第八章学习笔记————使用Spring Web Flow

    Spring实战第八章学习笔记----使用Spring Web Flow Spring Web Flow是一个Web框架,它适用于元素按规定流程运行的程序. 其实我们可以使用任何WEB框架写流程化的应 ...

  3. VM实例的生命周期管理

    有的操作功能比较类似,也有各自的适用场景,简单介绍下上述几个重要的操作: 常规操作: 常规操作中,Launch.Start.Reboot.Shut Off 和 Terminate 都很好理解. 下面几 ...

  4. ThinkPHP5 Model分层及多对多关联的建立

    笔者最近入手ThinkPHP5,准备用它来实现一个学生作业管理系统.简单的说就是学生在上面交老师布置的课程作业,老师也可以发布修改作业.过程中势必会碰到学生.班级和老师之间的关系.它们之间的关系是多对 ...

  5. svm+voting

    # encoding:utf-8 import getopt from sklearn.preprocessing import MinMaxScaler import os,time from mu ...

  6. Flask 学习笔记(二):RESTful API

    概括 URL:需要操作的对象,也就是资源 HTTP method:我要对该对象做什么(POST 增.DELETE 删.GET 查.PUT 和 PATCH 改) HTTP status code:操作的 ...

  7. HDU 4569 Special equations(枚举+数论)(2013 ACM-ICPC长沙赛区全国邀请赛)

    Problem Description Let f(x) = anxn +...+ a1x +a0, in which ai (0 <= i <= n) are all known int ...

  8. DFS——hdu5682zxa and leaf

    一.题目回顾 题目链接:zxa and leaf Sample Input 2 3 2 1 2 1 3 2 4 3 9 6 2 1 2 1 3 1 4 2 5 2 6 3 6 5 9   Sample ...

  9. html页面简单制作示例

    内有表格布局,具体见 链接: https://pan.baidu.com/s/1V7IcxQ5M-iXVdlzuf8bo-A 密码: 8dp8

  10. 玩lua

    https://my.oschina.net/wangxuanyihaha/blog/186401