UVALIVE 3891 The Teacher's Side of Math
One of the tasks students routinely carry out in their mathematics classes is to solve a polynomial equation. It is, given a polynomial, sayX2 - 4X + 1<tex2html_verbatim_mark> , to find its roots (2±)<tex2html_verbatim_mark> .
If the students' task is to find the roots of a given polynomial, the teacher's task is then to find a polynomial that has a given root. Ms. Galsone is an enthusiastic mathematics teacher who is bored with finding solutions of quadratic equations that are as simple as a + b<tex2html_verbatim_mark> . She wanted to make higher-degree equations whose solutions are a little more complicated. As usual in problems in mathematics classes, she wants to maintain all coefficients to be integers and keep the degree of the polynomial as small as possible (provided it has the specified root). Please help her by writing a program that carries out the task of the teacher's side.
You are given a number t<tex2html_verbatim_mark> of the form:


<tex2html_verbatim_mark>
where a<tex2html_verbatim_mark> and b<tex2html_verbatim_mark> are distinct prime numbers, and m<tex2html_verbatim_mark> and n<tex2html_verbatim_mark> are integers greater than 1.
In this problem, you are asked to find t<tex2html_verbatim_mark> 's minimal polynomial on integers, which is the polynomial F(X) = adXd + ad-1Xd-1 + ... + a1X +a0<tex2html_verbatim_mark> satisfying the following conditions.
- Coefficients a0,..., ad<tex2html_verbatim_mark> are integers and ad > 0<tex2html_verbatim_mark> .
- F(t) = 0<tex2html_verbatim_mark> .
- The degree d<tex2html_verbatim_mark> is minimum among polynomials satisfying the above two conditions.
- F(X)<tex2html_verbatim_mark> is primitive. That is, coefficients a0,..., ad<tex2html_verbatim_mark> have no common divisors greater than one.
For example, the minimal polynomial of +
<tex2html_verbatim_mark> on integers is F(X) = X4 -10X2 + 1<tex2html_verbatim_mark> . Verifying F(t) = 0<tex2html_verbatim_mark> is as simple as the following (
=
,
=
<tex2html_verbatim_mark> ).
F(t) | = | (![]() ![]() ![]() ![]() |
= | (![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
= | 9 + 12![]() ![]() ![]() ![]() ![]() ![]() |
|
= | (9 + 36 + 4 - 50 + 1) + (12 + 8 - 20)![]() ![]() |
|
= | 0 |
<tex2html_verbatim_mark>
Verifying that the degree of F(t)<tex2html_verbatim_mark> is in fact minimum is a bit more difficult. Fortunately, under the condition given in this problem, which is that a<tex2html_verbatim_mark> and b<tex2html_verbatim_mark> are distinct prime numbers and m<tex2html_verbatim_mark> and n<tex2html_verbatim_mark> greater than one, the degree of the minimal polynomial is always mn<tex2html_verbatim_mark> . Moreover, it is always monic. That is, the coefficient of its highest-order term ( ad<tex2html_verbatim_mark> ) is one.
Input
The input consists of multiple datasets, each in the following format.
<tex2html_verbatim_mark>
This line represents +
<tex2html_verbatim_mark> . The last dataset is followed by a single line consisting of four zeros. Numbers in a single line are separated by a single space.
Every dataset satisfies the following conditions.
+
4<tex2html_verbatim_mark>
- mn
20<tex2html_verbatim_mark>
- The coefficients of the answer a0,..., ad<tex2html_verbatim_mark> are between (- 231 + 1)<tex2html_verbatim_mark> and (231 - 1)<tex2html_verbatim_mark> , inclusive.
Output
For each dataset, output the coefficients of its minimal polynomial on integers F(X) = adXd + ad-1Xd-1 + ... + a1X + a0<tex2html_verbatim_mark> , in the following format.
<tex2html_verbatim_mark>
Non-negative integers must be printed without a sign (+ or -). Numbers in a single line must be separated by a single space and no other characters or extra spaces may appear in the output.
3 2 2 2
3 2 2 3
2 2 3 4
31 4 2 3
3 2 2 7
0 0 0 0
Sample Output
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
#define MAXN 25
const double eps = 1e-8;
LL a,m,b,n;
LL C[MAXN][MAXN];
int Hash[MAXN][MAXN],tot;
double A[MAXN][MAXN];
void init()
{
for (int i = 0 ; i <= 20 ; i++)
{
C[i][0] = C[i][i] = 1;
for (int j = 1; j < i ; j++)
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
tot = 0;
for (int i = 0 ; i < m ; i++)
for (int j = 0 ; j < n ; j++)
Hash[i][j] = tot++;
}
void build()
{
memset(A,0,sizeof(A));
A[0][0] = 1;
for (int i = 1; i <= tot ; i++)
{
for (int j = 0 ; j <= i ; j++)
{
int l = j , r = i - j;
double tmp = C[i][l] * pow(a * 1.0,l / m) * pow(b * 1.0,r / n);
l %= m ; r %= n;
A[Hash[l][r]][i] += tmp;
}
}
A[tot][tot] = 1;
A[tot][tot + 1] = 1;
tot++;
}
void print(double x)
{
char s[100];
sprintf(s,"%.0lf",x);
if (strcmp(s,"-0") == 0) printf(" %s",s + 1);
else printf(" %s",s);
}
void gauss()
{
for (int i = 0 ; i < tot ; i++)
{
int r = i;
for (int j = i + 1; j < tot ; j++)
{
if (fabs(A[j][i]) > fabs(A[r][i])) r = j;
}
if (fabs(A[r][i]) < eps) continue;
for (int j = i ; j <= tot ; j++) swap(A[r][j],A[i][j]);
for (int j = 0 ; j < tot ; j++)
{
if (i == j) continue;
if (fabs(A[j][i]) < eps) continue;
double tmp = A[j][i] / A[i][i];
for (int k = i ; k <= tot ; k++)
{
A[j][k] -= tmp * A[i][k];
}
}
}
printf("1");
for (int i = tot - 2; i >= 0; i--)
print(A[i][tot] / A[i][i]);
printf("\n");
}
int main()
{
while(scanf("%lld%lld%lld%lld",&a,&m,&b,&n) != EOF)
{
if (n == 0 && m == 0 && b == 0 && n == 0) break;
init();
build();
gauss();
}
return 0;
}
1 0 -10 0 1
1 0 -9 -4 27 -36 -23
1 0 -8 0 18 0 -104 0 1
1 0 0 -8 -93 0 24 -2976 2883 -32 -3720 -23064 -29775
1 0 -21 0 189 0 -945 -4 2835 -252 -5103 -1260 5103 -756 -2183 这里思路比较简单。注意有个负0处理参照了别人了的代码。照着抄的。。
思路就是简单记录a,b的各种次幂组合根据组合数确定系数。最后为0.注意最高项为1;
UVALIVE 3891 The Teacher's Side of Math的更多相关文章
- UVALive 6073 Math Magic
6073 Math MagicYesterday, my teacher taught us about m ...
- UVA 1397 - The Teacher's Side of Math(高斯消元)
UVA 1397 - The Teacher's Side of Math 题目链接 题意:给定一个x=a1/m+b1/n.求原方程组 思路:因为m*n最多20,全部最高项仅仅有20.然后能够把每一个 ...
- Math Magic(完全背包)
Math Magic Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Submit Sta ...
- ZOJ3662:Math Magic(全然背包)
Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least common m ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- sqlalchemy 学习-- 多表操作
一对多:一对一 # one -- many class Students(Base): __tablename__ = "students" sid = Column(Intege ...
- sqlalchemy 学习--单表操作
以下所有代码片段都使用了统一的引用,该引用如下: from sqlalchemy import create_engine, ForeignKey from sqlalchemy.ext.declar ...
- [转] fitnesse中的Map处理
http://blog.csdn.net/doubeizhucele/article/details/42263887 fintesse会把!{}标记的变量视为HashTable对象,展现到页面上的将 ...
- zoj3662Math Magic
Math Magic Time Limit: 3 Seconds Memory Limit: 32768 KB Yesterday, my teacher taught us about ...
随机推荐
- coreos install megacli
基于官方的coreos ramdisk安装dell raid管理工具,其版本为debian8 jessie root@c64c7df05677:/# more /etc/apt/sources.lis ...
- TensorFlow 调用预训练好的模型—— Python 实现
1. 准备预训练好的模型 TensorFlow 预训练好的模型被保存为以下四个文件 data 文件是训练好的参数值,meta 文件是定义的神经网络图,checkpoint 文件是所有模型的保存路径,如 ...
- 小程序开发时PC端调试返回结果和手机端IOS不一致问题
IOS11登录时遇到一个请求与PC返回不一致情况, 在小程序调试时IOS上始终没有wx.request() 不能发送请求 尝试解决方法 打开微信小程序调试的设置, 将TLS设为可信任的域名 设置 -- ...
- Hadoop世界中的HelloWorld之WordCount具体分析
MapReduce 应用举例:单词计数 WorldCount可以说是MapReduce中的helloworld了,下面来看看hadoop中的例子worldcount对其进行的处理过程,也能对mapre ...
- 团队作业4——第一次项目冲刺(Alpha版本)-第三篇
项目冲刺——第三阶段 前两阶段很ok,目测这三天可以搞定! 分工讨论 大体上搞定,设置困难度的功能还未完成. 团队成员 任务 郭达 整合各种代码 刘德培 数据库完善和其他人对接 石浩洋 完善PH ...
- 【python】python获取当前日期前后N天或N月的日期
# -*- coding: utf- -*- '''获取当前日期前后N天或N月的日期''' from time import strftime, localtime from datetime imp ...
- POJ3415 Common Substrings 【后缀数组 + 单调栈】
常见的子串 时间限制: 5000MS 内存限制: 65536K 提交总数: 11942 接受: 4051 描述 字符串T的子字符串被定义为: Ť(我,ķ)= Ť 我 Ť 我 1 ... Ť I ...
- pb_ds
#include<ext/pb_ds/priority_queue.hpp>#define ll long long#define pa pair<ll,int>using n ...
- BZOJ day2_plus
大半夜的刷b站,好爽啊... 突破十九题 1008105110591088117911911192143218761951196821402242243824562463276128184720
- 手把手教你通过Eclipse工程配置调用JNI完全攻略
本文地址:http://www.cnblogs.com/wavky/p/JNI.html 当你找到并鬼使神差地打开这个博文的时候,我敢肯定你已经知道什么是JNI,基本概念就不粘贴了. 百度出来的JNI ...