One of the tasks students routinely carry out in their mathematics classes is to solve a polynomial equation. It is, given a polynomial, sayX2 - 4X + 1<tex2html_verbatim_mark> , to find its roots (2±)<tex2html_verbatim_mark> .

If the students' task is to find the roots of a given polynomial, the teacher's task is then to find a polynomial that has a given root. Ms. Galsone is an enthusiastic mathematics teacher who is bored with finding solutions of quadratic equations that are as simple as a + b<tex2html_verbatim_mark> . She wanted to make higher-degree equations whose solutions are a little more complicated. As usual in problems in mathematics classes, she wants to maintain all coefficients to be integers and keep the degree of the polynomial as small as possible (provided it has the specified root). Please help her by writing a program that carries out the task of the teacher's side.

You are given a number t<tex2html_verbatim_mark> of the form:

t =  + 

<tex2html_verbatim_mark>

where a<tex2html_verbatim_mark> and b<tex2html_verbatim_mark> are distinct prime numbers, and m<tex2html_verbatim_mark> and n<tex2html_verbatim_mark> are integers greater than 1.

In this problem, you are asked to find t<tex2html_verbatim_mark> 's minimal polynomial on integers, which is the polynomial F(X) = adXd + ad-1Xd-1 + ... a1X +a0<tex2html_verbatim_mark> satisfying the following conditions.

  1. Coefficients a0,..., ad<tex2html_verbatim_mark> are integers and ad > 0<tex2html_verbatim_mark> .
  2. F(t) = 0<tex2html_verbatim_mark> .
  3. The degree d<tex2html_verbatim_mark> is minimum among polynomials satisfying the above two conditions.
  4. F(X)<tex2html_verbatim_mark> is primitive. That is, coefficients a0,..., ad<tex2html_verbatim_mark> have no common divisors greater than one.

For example, the minimal polynomial of  + <tex2html_verbatim_mark> on integers is F(X) = X4 -10X2 + 1<tex2html_verbatim_mark> . Verifying F(t) = 0<tex2html_verbatim_mark> is as simple as the following ( = , = <tex2html_verbatim_mark> ).

F(t) = ( + )4 -10( + )2 + 1
  = ( +4 +6 +4 + ) - 10( +2 + ) + 1
  = 9 + 12 +36 + 8 +4 - 10(3 + 2 + 2) + 1
  = (9 + 36 + 4 - 50 + 1) + (12 + 8 - 20)
  = 0

<tex2html_verbatim_mark>

Verifying that the degree of F(t)<tex2html_verbatim_mark> is in fact minimum is a bit more difficult. Fortunately, under the condition given in this problem, which is that a<tex2html_verbatim_mark> and b<tex2html_verbatim_mark> are distinct prime numbers and m<tex2html_verbatim_mark> and n<tex2html_verbatim_mark> greater than one, the degree of the minimal polynomial is always mn<tex2html_verbatim_mark> . Moreover, it is always monic. That is, the coefficient of its highest-order term ( ad<tex2html_verbatim_mark> ) is one.

Input

The input consists of multiple datasets, each in the following format.

a  m  b  n

<tex2html_verbatim_mark>

This line represents  + <tex2html_verbatim_mark> . The last dataset is followed by a single line consisting of four zeros. Numbers in a single line are separated by a single space.

Every dataset satisfies the following conditions.

  1.  + 4<tex2html_verbatim_mark>
  2. mn20<tex2html_verbatim_mark>
  3. The coefficients of the answer a0,..., ad<tex2html_verbatim_mark> are between (- 231 + 1)<tex2html_verbatim_mark> and (231 - 1)<tex2html_verbatim_mark> , inclusive.

Output

For each dataset, output the coefficients of its minimal polynomial on integers F(X) = adXd + ad-1Xd-1 + ... a1X + a0<tex2html_verbatim_mark> , in the following format.

ad  ad-1 ..  a1  a0

<tex2html_verbatim_mark>

Non-negative integers must be printed without a sign (+ or -). Numbers in a single line must be separated by a single space and no other characters or extra spaces may appear in the output.

3 2 2 2
3 2 2 3
2 2 3 4
31 4 2 3
3 2 2 7
0 0 0 0

Sample Output

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
#define MAXN 25
const double eps = 1e-8;
LL a,m,b,n;
LL C[MAXN][MAXN];
int Hash[MAXN][MAXN],tot;
double A[MAXN][MAXN];
void init()
{
for (int i = 0 ; i <= 20 ; i++)
{
C[i][0] = C[i][i] = 1;
for (int j = 1; j < i ; j++)
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
tot = 0;
for (int i = 0 ; i < m ; i++)
for (int j = 0 ; j < n ; j++)
Hash[i][j] = tot++;
}
void build()
{
memset(A,0,sizeof(A));
A[0][0] = 1;
for (int i = 1; i <= tot ; i++)
{
for (int j = 0 ; j <= i ; j++)
{
int l = j , r = i - j;
double tmp = C[i][l] * pow(a * 1.0,l / m) * pow(b * 1.0,r / n);
l %= m ; r %= n;
A[Hash[l][r]][i] += tmp;
}
}
A[tot][tot] = 1;
A[tot][tot + 1] = 1;
tot++;
}
void print(double x)
{
char s[100];
sprintf(s,"%.0lf",x);
if (strcmp(s,"-0") == 0) printf(" %s",s + 1);
else printf(" %s",s);
}
void gauss()
{
for (int i = 0 ; i < tot ; i++)
{
int r = i;
for (int j = i + 1; j < tot ; j++)
{
if (fabs(A[j][i]) > fabs(A[r][i])) r = j;
}
if (fabs(A[r][i]) < eps) continue;
for (int j = i ; j <= tot ; j++) swap(A[r][j],A[i][j]);
for (int j = 0 ; j < tot ; j++)
{
if (i == j) continue;
if (fabs(A[j][i]) < eps) continue;
double tmp = A[j][i] / A[i][i];
for (int k = i ; k <= tot ; k++)
{
A[j][k] -= tmp * A[i][k];
}
}
}
printf("1");
for (int i = tot - 2; i >= 0; i--)
print(A[i][tot] / A[i][i]);
printf("\n");
}
int main()
{
while(scanf("%lld%lld%lld%lld",&a,&m,&b,&n) != EOF)
{
if (n == 0 && m == 0 && b == 0 && n == 0) break;
init();
build();
gauss();
}
return 0;
}

  

1 0 -10 0 1
1 0 -9 -4 27 -36 -23
1 0 -8 0 18 0 -104 0 1
1 0 0 -8 -93 0 24 -2976 2883 -32 -3720 -23064 -29775
1 0 -21 0 189 0 -945 -4 2835 -252 -5103 -1260 5103 -756 -2183 这里思路比较简单。注意有个负0处理参照了别人了的代码。照着抄的。。
思路就是简单记录a,b的各种次幂组合根据组合数确定系数。最后为0.注意最高项为1;

UVALIVE 3891 The Teacher's Side of Math的更多相关文章

  1. UVALive 6073 Math Magic

                                                  6073 Math MagicYesterday, my teacher taught us about m ...

  2. UVA 1397 - The Teacher&#39;s Side of Math(高斯消元)

    UVA 1397 - The Teacher's Side of Math 题目链接 题意:给定一个x=a1/m+b1/n.求原方程组 思路:因为m*n最多20,全部最高项仅仅有20.然后能够把每一个 ...

  3. Math Magic(完全背包)

    Math Magic Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Sta ...

  4. ZOJ3662:Math Magic(全然背包)

    Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least common m ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. sqlalchemy 学习-- 多表操作

    一对多:一对一 # one -- many class Students(Base): __tablename__ = "students" sid = Column(Intege ...

  7. sqlalchemy 学习--单表操作

    以下所有代码片段都使用了统一的引用,该引用如下: from sqlalchemy import create_engine, ForeignKey from sqlalchemy.ext.declar ...

  8. [转] fitnesse中的Map处理

    http://blog.csdn.net/doubeizhucele/article/details/42263887 fintesse会把!{}标记的变量视为HashTable对象,展现到页面上的将 ...

  9. zoj3662Math Magic

    Math Magic Time Limit: 3 Seconds       Memory Limit: 32768 KB Yesterday, my teacher taught us about ...

随机推荐

  1. POSTMAN——环境变量

    打开Manage Environment 设置几个自己的环境变量 可以在此看到设置的环境变量 在URL栏填写变量名,这个变量对应着百度的网址 send后可以查看回显 接下来设置全局变量,点开globa ...

  2. final static 修饰(转载)

    static修饰符        static修饰符能够与属性.方法和内部类一起使用,表示静态的.类中的静态变量和静态方法能够与类名一起使用,不需要创建一个类的对象来访问该类的静态成员,所以,stat ...

  3. Java并发基础--线程通信

    java中实现线程通信的四种方式 1.synchronized同步 多个线程之间可以借助synchronized关键字来进行间接通信,本质上是通过共享对象进行通信.如下: public class S ...

  4. GraphSAGE 代码解析 - minibatch.py

    class EdgeMinibatchIterator """ This minibatch iterator iterates over batches of samp ...

  5. remix无法安装的解决方案

    无法安装的原因: 因为remix依赖python 执行python又依赖c++的环境 所以连环导致出错 https://github.com/nodejs/node-gyp 措施一:降级处理 先清理缓 ...

  6. ng2 搭建本地开发环境

    git clone https://github.com/angular/quickstart.git quickstart cd quickstart npm install npm start h ...

  7. Linux yum安装MySQL5.7,及远程连接mysql(亲测有效!)

    一.安装配置MySQL的yum源 # 安装MySQL的yum源,下面是RHEL6系列的下载地址 rpm -Uvh http://dev.mysql.com/get/mysql-community-re ...

  8. gradle在build之后执行任务

    在打包后一般会有copy jar文件的需求. 先在build.gradle文件中定义你的task: task myCopy{ println "some copy code..." ...

  9. PhoneGap & HTML5 学习资料网址

    PhoneGap 与 Application Cache应用缓存  http://www.html5cn.org/forum.php?mod=viewthread&tid=40272 加速We ...

  10. MYSQL 服务无法启动,错误日志:InnoDB: .\ibdata1 must be writable

    这几天安装MYSQL 5.7版本的时候,出现了服务无法启动的问题,尝试了各种修改配置文件my.ini的方法都不行,查看到错误日志,一般错误日志在C:\Program Files\MySQL\MySQL ...