题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2425

题意:

  给你一个数字n,长度不超过50。

  你可以将这个数字:

    (1)去掉若干个0

    (2)打乱后重新排列

  问你可以产生多少个小于n的数字。

题解:

  题目中的第一个操作其实是没有用的。

  去掉若干个0之后再重新排列(不允许前导0),和不去0直接重新排列(允许前导0),其实是等价的。

  所以按照数位dp的方法从高到低按位统计。

  如n = 2345时,分别统计前缀为0~1, 20~22, 230~233, 2340~2344的答案。

  最高位为第1位。

  假设当前考虑到第i位,1~i-1位都和原数字n完全匹配。

  枚举第i位可以填了x∈[0,a[i]),则先让cnt[x]--。

  然后就是i+1位之后的数如何填了。

  设len = n-i。

  方案数 = 先从len个位置中找了cnt[0]个位置全填0的方案数 * 又从(len-cnt[0])个位置中找了cnt[1]个位置全填1的方案数...

  方案数 = C(len,cnt[0]) * C(len-cnt[0],cnt[1]) * C(len-cnt[0]-cnt[1],cnt[2])...

  最后再让cnt[x]++回来,然后cnt[a[i]]--就好了。

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 55
#define MAX_D 15 using namespace std; int n;
long long ans=;
long long a[MAX_N];
long long cnt[MAX_N];
long long c[MAX_N][MAX_N];
char s[MAX_N]; void read()
{
scanf("%s",s+);
n=strlen(s+);
for(int i=;i<=n;i++) cnt[a[i]=s[i]-'']++;
} void cal_c()
{
c[][]=;
for(int i=;i<=n;i++)
{
c[i][]=;
for(int j=;j<=i;j++)
{
c[i][j]=c[i-][j]+c[i-][j-];
}
}
} long long cal_p(int len)
{
long long now=;
for(int i=;i<=;i++)
{
now*=c[len][cnt[i]];
len-=cnt[i];
}
return now;
} void cal_ans()
{
for(int i=;i<=n;i++)
{
for(int j=;j<a[i];j++)
{
cnt[j]--;
ans+=cal_p(n-i);
cnt[j]++;
}
cnt[a[i]]--;
}
} void work()
{
cal_c();
cal_ans();
printf("%lld\n",ans);
} int main()
{
read();
work();
}

BZOJ 2425 [HAOI2010]计数:数位dp + 组合数的更多相关文章

  1. [HAOI2010]计数 数位DP+组合数

    题面: 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等. ...

  2. bzoj 2425 [HAOI2010]计数 dp+组合计数

    [HAOI2010]计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 451  Solved: 289[Submit][Status][Discus ...

  3. BZOJ 1833 数字计数 数位DP

    题目链接 做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来..... 想深入了解下数位DP的请点这里 先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数 有 ...

  4. BZOJ2425:[HAOI2010]计数(数位DP)

    Description 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1 ...

  5. 【BZOJ-1833】count数字计数 数位DP

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][ ...

  6. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  7. 【题解】P2602 数字计数 - 数位dp

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...

  8. BZOJ 3652: 大新闻(数位DP+概率论)

    不得不说数位DP和博弈论根本不熟啊QAQ,首先这道题嘛~~~可以分成两个子问题: 有加密:直接算出0~n中二进制每一位为0或为1分别有多少个,然后分位累加求和就行了= = 无加密:分别算出0~n中二进 ...

  9. BZOJ 4521 [CQOI2016]手机号码 - 数位DP

    Description 在$[L, R]$找出有几个数满足两个条件 : 1 : 不同时含有$4$ 和 $8$ 2 : 至少有$3$个相邻的数相同 Solution 非常容易的数位DP, $pos$ 为 ...

随机推荐

  1. 记录--java 分页 思路 (hibernate关键代码)

    有时会脑袋蒙圈,记录下分页的思路 下面代码是hibernate的分页,其分页就是从第几条数据为起点,取几条数据.比如在mysql中的limit(5,10)取的就是第6条到第10条 在下面代码中的pag ...

  2. CSS3边框border-radius

    一.官方解释 设置或检索对象使用圆角边框.提供2个参数,2个参数以“/”分隔,每个参数允许设置1~4个参数值,第1个参数表示水平半径,第2个参数表示垂直半径,如第2个参数省略,则默认等于第1个参数. ...

  3. 协程 Gevent

    # 协程应用:爬虫 from gevent import monkey;monkey.patch_all() import gevent import requests import time def ...

  4. Python 获取文件路径及文件目录

    import os print (os.path.dirname(__file__)) print (os.path.abspath(__file__)) print (os.path.abspath ...

  5. sql获取该周的开始结束日期

    mssql函数 IF EXISTS ( SELECT 1 FROM sysobjects WHERE name = 'fn_GetWeekDate') DROP FUNCTION fn_GetWeek ...

  6. Charles安装与使用

    Charles是在 Mac 下常用的网络封包截取工具,在做 移动开发时,我们为了调试与服务器端的网络通讯协议,常常需要截取网络封包来分析. Charles 通过将自己设置成系统的网络访问代理服务器,使 ...

  7. STL之map、set灵活使用

    1.LA 5908/UVA1517 Tracking RFIDs 题意:给出s个传感器的位置,以及其感应范围.如果某个方向上有墙,则该方向上感应距离减1.现在有w个墙,给出p个物品的位置,问其能被几个 ...

  8. classmethod

    描述 classmethod 修饰符对应的函数不需要实例化,不需要 self 参数,但第一个参数需要是表示自身类的 cls 参数,可以来调用类的属性,类的方法,实例化对象等. 语法 classmeth ...

  9. Android:日常学习笔记(8)———开发微信聊天界面

    Android:日常学习笔记(8)———开发微信聊天界面 只做Nine-Patch图片 Nine-Patch是一种被特殊处理过的PNG图片,能够指定哪些区域可以被拉升,哪些区域不可以.

  10. 爬虫学习笔记(2)--创建scrapy项目&&css选择器

    一.手动创建scrapy项目---------------- 安装scrapy: pip install -i https://pypi.douban.com/simple/  scrapy    1 ...