stanford推荐阅读目录
stanford deep learning 网站上推荐的阅读目录:
UFLDL Recommended Readings
If you're learning about UFLDL (Unsupervised Feature Learning and Deep Learning), here is a list of papers to consider reading. We're assuming you're already familiar with basic machine learning at the level of [CS229 (lecture notes available)].
The basics:
- [CS294A] Neural Networks/Sparse Autoencoder Tutorial. (Most of this is now in the UFLDL Tutorial, but the exercise is still on the CS294A website.)
- [1] Natural Image Statistics book, Hyvarinen et al.
- This is long, so just skim or skip the chapters that you already know.
- Important chapters: 5 (PCA and whitening; you'll probably already know the PCA stuff), 6 (sparse coding), 7 (ICA), 10 (ISA), 11 (TICA), 16 (temporal models).
- [2] Olshausen and Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images Nature 1996. (Sparse Coding)
- [3] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer and Andrew Y. Ng. Self-taught learning: Transfer learning from unlabeled data. ICML 2007
Autoencoders:
- [4] Hinton, G. E. and Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 2006.
- If you want to play with the code, you can also find it at [5].
- [6] Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. Greedy Layer-Wise Training of Deep Networks. NIPS 2006
- [7] Pascal Vincent, Hugo Larochelle, Yoshua Bengio and Pierre-Antoine Manzagol. Extracting and Composing Robust Features with Denoising Autoencoders. ICML 2008.
- (They have a nice model, but then backwards rationalize it into a probabilistic model. Ignore the backwards rationalized probabilistic model [Section 4].)
Analyzing deep learning/why does deep learning work:
- [8] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation. ICML 2007.
- (Someone read this and let us know if this is worth keeping,. [Most model related material already covered by other papers, it seems not many impactful conclusions can be made from results, but can serve as reading for reinforcement for deep models])
- [9] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio. Why Does Unsupervised Pre-training Help Deep Learning? JMLR 2010
- [10] Ian J. Goodfellow, Quoc V. Le, Andrew M. Saxe, Honglak Lee and Andrew Y. Ng. Measuring invariances in deep networks. NIPS 2009.
RBMs:
- [11] Tutorial on RBMs.
- But ignore the Theano code examples.
- (Someone tell us if this should be moved later. Useful for understanding some of DL literature, but not needed for many of the later papers? [Seems ok to leave in, useful introduction if reader had no idea about RBM's, and have to deal with Hinton's 06 Science paper or 3-way RBM's right away])
Convolution Networks:
- [12] Tutorial on Convolution Neural Networks.
- But ignore the Theano code examples.
Applications:
- Computer Vision
- Audio Recognition
- [15] Unsupervised feature learning for audio classification using convolutional deep belief networks, Honglak Lee, Yan Largman, Peter Pham and Andrew Y. Ng. In NIPS 2009.
Natural Language Processing:
- [16] Yoshua Bengio, Réjean Ducharme, Pascal Vincent and Christian Jauvin, A Neural Probabilistic Language Model. JMLR 2003.
- [17] R. Collobert and J. Weston. A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning. ICML 2008.
- [18] Richard Socher, Jeffrey Pennington, Eric Huang, Andrew Y. Ng, and Christopher D. Manning. Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions. EMNLP 2011
- [19] Richard Socher, Eric Huang, Jeffrey Pennington, Andrew Y. Ng, and Christopher D. Manning. Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection. NIPS 2011
- [20] Mnih, A. and Hinton, G. E. Three New Graphical Models for Statistical Language Modelling. ICML 2007
Advanced stuff:
- Slow Feature Analysis:
- [21] Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision, 2005.
- Predictive Sparse Decomposition
- [22] Koray Kavukcuoglu, Marc'Aurelio Ranzato, and Yann LeCun, "Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition", Computational and Biological Learning Lab, Courant Institute, NYU, 2008.
- [23] Kevin Jarrett, Koray Kavukcuoglu, Marc'Aurelio Ranzato, and Yann LeCun, "What is the Best Multi-Stage Architecture for Object Recognition?", In ICCV 2009
Mean-Covariance models
- [24] M. Ranzato, A. Krizhevsky, G. Hinton. Factored 3-Way Restricted Boltzmann Machines for Modeling Natural Images. In AISTATS 2010.
- [25] M. Ranzato, G. Hinton, Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines. CVPR 2010
- (someone and tell us if you need to read the 3-way RBM paper before the mcRBM one [I didn't find it necessary, in fact the CVPR paper seemed easier to understand.])
- [26] Dahl, G., Ranzato, M., Mohamed, A. and Hinton, G. E. Phone Recognition with the Mean-Covariance Restricted Boltzmann Machine. NIPS 2010.
- [27] Y. Karklin and M. S. Lewicki, Emergence of complex cell properties by learning to generalize in natural scenes, Nature, 2008.
- (someone tell us if this should be here. Interesting algorithm + nice visualizations, though maybe slightly hard to understand. [seems a good reminder there are other existing models])
Overview
- [28] Yoshua Bengio. Learning Deep Architectures for AI. FTML 2009.
- (Broad landscape description of the field, but technical details there are hard to follow so ignore that. This is also easier to read after you've gone over some of literature of the field.)
Practical guides:
- [29] Geoff Hinton. A practical guide to training restricted Boltzmann machines. UTML TR 2010–003.
- A practical guide (read if you're trying to implement and RBM; but otherwise skip since this is not really a tutorial).
- [30] Y. LeCun, L. Bottou, G. Orr and K. Muller. Efficient Backprop. Neural Networks: Tricks of the trade, Springer, 1998
- Read if you're trying to run backprop; but otherwise skip since very low-level engineering/hackery tricks and not that satisfying to read.
Also, for other lists of papers:
stanford推荐阅读目录的更多相关文章
- [转]【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理 阅读目录
[NLP]干货!Python NLTK结合stanford NLP工具包进行文本处理 原贴: https://www.cnblogs.com/baiboy/p/nltk1.html 阅读目录 目 ...
- Web前端开发推荐阅读书籍
前言 前端工程师在中国兴起也就5年左右,以前公司里没有专门前端工程师的这个职位,很多前端方面的任务都是由全栈工程师来完成,有的基础一点的后台或者设计的帮助分担一些.但是随着互联网的快速发展,特别是所谓 ...
- 详解设计模式之工厂模式(简单工厂+工厂方法+抽象工厂) v阅读目录
1楼留头头大神:http://www.cnblogs.com/toutou/p/4899388.html v阅读目录 v写在前面 v简单工厂模式 v工厂方法模式 v抽象工厂模式 v博客总结 v博客 ...
- Java程序员到架构师的推荐阅读书籍
作为Java程序员来说,最痛苦的事情莫过于可以选择的范围太广,可以读的书太多,往往容易无所适从.我想就我自己读过的技术书籍中挑选出来一些,按照学习的先后顺序,推荐给大家,特别是那些想不断提高自己技术水 ...
- 彻底弄懂JS的事件冒泡和事件捕获(不推荐阅读)
由于搬去敌台了,好久没来博客园,今天无意中翻到有“误认子弟”的评论,这里特意做个说明. 本文中关于事件冒泡和事件捕获的描述和例子都是OK的,错就错在后面用jquery去展示了利用事件冒泡的例子有误,其 ...
- 项目管理利器——Maven阅读目录
阅读目录 一.Maven介绍及环境搭建 二.构建Maven版的Hello World 三.Maven常见构建命令 四.自动创建目录骨架 五.Maven中的坐标和仓库 六.在eclipse中安装Mave ...
- Java程序员进阶架构师推荐阅读书籍
[IT168 技术]作为Java程序员来说,最痛苦的事情莫过于可以选择的范围太广,可以读的书太多,往往容易无所适从.我想就我自己读过的技术书籍中挑选出来一些,按照学习的先后顺序,推荐给大家,特别是那些 ...
- python之路——阅读目录
阅读目录 希望大家多多交流,有错误的地方请随时指正,笔记记得可能有点杂 一.python入门 计算机基础 编程语言发展史和python安装 二.数据类型.字符编码.文件处理 python基础数据类型 ...
- C++ day01 预备知识、C++综述、教材、推荐阅读。
C++ day01: 1.预备知识? 1)什么是编程 编程,即编订程序. 程序 = 数据 + 算法(蛋糕 = 糖.鸡蛋.奶油 + 打鸡蛋.加糖.烤) 2)编程语言 最初的编程是用二进制代码(即“机器码 ...
随机推荐
- Vue中浏览器的的前进和后退
项目开发的时候,有时候可能需要我们来对页面后退和前进,这个东西跟浏览器自带的前进后退功能很像,下面来大致讲一下在vue中浏览器的前进和后退 一.后退功能 vue中的后退有好多种方法可以使用,使用这些方 ...
- Js用户引导插件intro
1.demo直接贴上来了,有什么不懂的,直接去官网上看,地址:https://introjs.com/. 2.这个intro插件的版本是v2.7.0,复制下来代码,引入库应该直接可以运行. 3.点评一 ...
- 开机提示memory size decreased怎么办?
ytkah的办公电脑实在是hold不住,win7用2G的内存,基本是在等待中度过的,没有新的只能考虑加格内存了,采购嘛,需走一大堆流程,跟领导请示从其他硬件需求不是很高的电脑那边拔一根内存条吧,小C的 ...
- Linux中vim命令出现E325错误解决方法
出现该问题的原因是: vim在编辑文件的时候会创建一个swp file来保证文件的安全性,如果没有正常退出vim的,下次打开这个文件就会报E325的错误,提示swp文件已经存在. 解决方法也简单:把这 ...
- seaborn(matplotlib)画图,linux系统中文乱码等问题解决
data = pd.read_json(json.dumps(issue_dpl)) # set pic size plt.figure(figsize=(13, 5)) sns.set_style( ...
- LSTM梳理,理解,和keras实现 (一)
注:本文主要是在http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 这篇文章的基础上理解写成,姑且也可以称作 The understan ...
- C#加快Bitmap的访问速度
在对Bitmap图片操作的时候,有时需要用到获取或设置像素颜色方法:GetPixel 和 SetPixel, 如果直接对这两个方法进行操作的话速度很慢,这里我们可以通过把数据提取出来操作,然后操作完在 ...
- Ubuntu 安装VMware Tools
安装步骤: 首先,点击VMware菜单的-VM-Install VMware Tools (虚拟机-装载VMwareTool 工具) 这时,在Ubuntu下会自动加载Linux版的VMware Too ...
- PAT 天梯赛 L1-029. 是不是太胖了 【水】
题目链接 https://www.patest.cn/contests/gplt/L1-029 AC代码 #include <iostream> #include <cstdio&g ...
- Python编程-异常处理
一.错误和异常 1.程序中难免出现错误,而错误分成两种 (1)语法错误(这种错误,根本过不了python解释器的语法检测,必须在程序执行前就改正) #语法错误示范一 if #语法错误示范二 def t ...