DP的四边形优化

一、进行四边形优化需要满足的条件

  1、状态转移方程如下:

    

      m(i,j)表示对应i,j情况下的最优值。

      w(i,j)表示从i到j的代价。

      例如在合并石子中:

        m(i,j)表示从第i堆石子合并到j堆石子合并成一堆的最小代价。

        w(i,j)表示从第i堆石子到第j堆石子的重量和。

  2、函数w满足区间包含的单调性和四边形不等式

       

二、满足上述条件之后的两条定理

  1、假如函数w满足上述条件,那么函数m 也满足四边形不等式,即

    

    例如:

        假如有:w(1, 3) + w(2, 4) £ w(2, 3) + w(1, 4),

        m(1, 3) + m(2, 4) £ m(2, 3) + m(1, 4),

  2、假如m(i, j)满足四边形不等式,那么s (i, j)单调,即:

    

三、如何使用

  运用上面两条定理,可以将最上面的DP状态转移方程变为如下:

    

四、具体应用

  用四边形优化将合并石子(直线型)的时间复杂度化为 O(n*n)

  

 #include <iostream>
#include <string.h>
#include <stdio.h> using namespace std;
const int INF = << ;
const int N = ; int dp[N][N];
int p[N][N];
int sum[N];
int n; int getMinval()
{
for(int i=; i<=n; i++)
{
dp[i][i] = ;
p[i][i] = i;
}
for(int len=; len<n; len++)
{
for(int i=; i+len<=n; i++)
{
int end = i+len;
int tmp = INF;
int k = ;
for(int j=p[i][end-1]; j<=p[i+1][end]; j++)
{
if(dp[i][j] + dp[j+][end] + sum[end] - sum[i-] < tmp)
{
tmp = dp[i][j] + dp[j+][end] + sum[end] - sum[i-];
k = j;
}
}
dp[i][end] = tmp;
p[i][end] = k;
}
}
return dp[][n];
} int main()
{
while(scanf("%d",&n)!=EOF)
{
sum[] = ;
for(int i=; i<=n; i++)
{
int val;
scanf("%d",&val);
sum[i] = sum[i-] + val;
}
printf("%d\n",getMinval());
}
return ;
}

上述代码具体在内存中的运行过程:

DP的四边形优化的更多相关文章

  1. HRBUST - 1819 石子合并问题--圆形版(区间dp+环形+四边形优化)

    石子合并问题--圆形版 在圆形操场上摆放着一行共n堆的石子.现要将石子有序地合并成一堆.规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆石子数记为该次合并的得分.请编辑计算出将n堆石子合并成一堆的 ...

  2. 区间dp之四边形不等式优化详解及证明

    看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1] ...

  3. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

  4. HDU 3506 (环形石子合并)区间dp+四边形优化

    Monkey Party Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Tot ...

  5. HDU 2829 Lawrence(四边形优化DP O(n^2))

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...

  6. 51Nod 1022 石子归并 V2(区间DP+四边形优化)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 题目大意: N堆石子摆成一个环.现要将石子有次序地合并成 ...

  7. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  8. HDOJ 3516 Tree Construction 四边形优化dp

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3516 题意: 大概就是给你个下凸包的左侧,然后让你用平行于坐标轴的线段构造一棵树,并且这棵树的总曼哈顿 ...

  9. [bzoj1597][USACO2008]土地购买(DP斜率优化/四边形优化)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1597 分析: 1.先可以把被包含的土地可以去掉,这些土地的长宽肯定都是不会用的,具体先 ...

随机推荐

  1. h5 localStorage本地存储

    用户名:<input type="text" id="txtname"/> 密码:<input type="text" i ...

  2. element-UI ,Table组件实现拖拽效果

    拖拽效果,先放效果图,步骤放在后面~~ 一.引入三方插件 1.引入sortable.js的包: npm install sortable.js --save 2.或者npm i -S vuedragg ...

  3. mysql设计表结构数据类型的选择

    选择合适的数据类型 在使用MySQL创建数据表的时候会遇到一个问题,如何为字段选择合适的数据类型.比如创建一个员工信息表,每个字段都可以用很多种类型来定义, int,char,float等等. cha ...

  4. Python3.6全栈开发实例[009]

    9.字典dic,dic = {'k1': "v1", "k2": "v2", "k3": [11,22,33]}a.请循 ...

  5. python requests 使用

    快速上手 迫不及待了吗?本页内容为如何入门 Requests 提供了很好的指引.其假设你已经安装了 Requests.如果还没有,去安装一节看看吧. 首先,确认一下: Requests 已安装 Req ...

  6. SAP后勤模块实施攻略——1.ERP和SAP

    近日接到任务,看完乐立骏老师的SAP后勤模块实施攻略这本书,现在把第一章内容简单整理.第一章讲的是关于ERP和SAP的介绍. 1.ERP E:Enterprise / 企业 R:Resource / ...

  7. mysql学习笔记—常用sql语句

    sql注意事项: SQL 对大小写不敏感:SELECT 与 select 是相同的 某些数据库系统要求在每条 SQL 语句的末端使用分号. CREATE DATABASE CREATE DATABAS ...

  8. 剑指offer 面试16题

    面试16题: 题目:数值的整数次方 题:实现函数double Power(double base, int exponent),求base的exponent次方.不得使用库函数,同时不需要考虑大数问题 ...

  9. 算法寒假实习面试经过之 滴滴(电话一面二面 offer)

    一面:1h 介绍比赛项目. lr与xgb的区别? xgb 为什么不用归一化,onehot? xgb 与 gbdt的区别. 做这些比赛你们的优势在哪,既然全是相同的套路. RCNN的原理, CNN的原理 ...

  10. OCI编程

    OCI编码步骤: .定义OCI数据结构 .连接到Oracle数据库:使用orlon函数调用还可以并发连接多个数据库. .打开光标.通过调用oopen来打开一个光标. .分析语句.使用oparse来分析 ...