RMQ with Shifts

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
 
描述
    In the traditional RMQ (Range Minimum Query) problem, we have a static array A. Then for each query (L, R) (L<=R), we report the minimum value among A[L], A[L+1], …, A[R]. Note that the indices start from 1, i.e. the left-most element is A[1]. 
     In this problem, the array A is no longer static: we need to support another operation shift(i1, i2, i3, …, ik) (i1<i2<...<ik, k>1): we do a left “circular shift” of A[i1], A[i2], …, A[ik].  
     For example, if A={6, 2, 4, 8, 5, 1, 4}, then shift(2, 4, 5, 7) yields {6, 8, 4, 5, 4, 1, 2}. After that, shift(1,2) yields {8, 6, 4, 5, 4, 1, 2}. 
 
输入
There will be only one test case, beginning with two integers n, q (1<=n<=100,000, 1<=q<=120,000), the number of integers in array A, and the number of operations. The next line contains n positive integers not greater than 100,000, the initial elements in array A. Each of the next q lines contains an operation. Each operation is formatted as a string having no more than 30 characters, with no space characters inside. All operations are guaranteed to be valid. Warning: The dataset is large, better to use faster I/O methods.
输出
For each query, print the minimum value (rather than index) in the requested range.
样例输入
7 5
6 2 4 8 5 1 4
query(3,7)
shift(2,4,5,7)
query(1,4)
shift(1,2)
query(2,2)
样例输出
1
4
6
来源
湖南省第七届大学生计算机程序设计竞赛
题目大意:有个shift操作,也就是常见的更新,只是这里的更新比较别致,是交换i和i+1,i+1和i+2,i+2和i+3,etc(也有人理解为移动i、i+1、i+2...对应的数组中的值)。然后就是询问区间内的最小值。
解题思路:就是按题意一直更新就好了。
#include<bits/stdc++.h>
using namespace std;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
const int maxn=110000;
const int INF=1e9;
int minv[maxn*4];
int a[maxn],cnt=0;
int b[5000];
char str[100];
void PushUP(int rt){
minv[rt]=min(minv[rt*2],minv[rt*2+1]);
}
void build(int rt,int L,int R){
if(L==R){
scanf("%d",&minv[rt]);
a[cnt++]=minv[rt];
return ;
}
build(lson);
build(rson);
PushUP(rt);
}
int get_b(int st,int en){
int cnt=0;
int tm,tmp=0;
for(int i=st;i<en;i++){
if(str[i]>='0'&&str[i]<='9'){
tm=str[i]-'0';
tmp*=10;
tmp+=tm;
}else{
b[cnt++]=tmp;
tmp=0;
}
}
return cnt;
}
void exchange(int la,int ra){
int tm=a[la];
a[la]=a[ra];
a[ra]=tm;
}
int query(int rt,int L,int R,int l_ran,int r_ran){
if(l_ran<=L&&R<=r_ran){
return minv[rt];
}
int ret_l=INF,ret_r=INF;
if(l_ran<=mid){
ret_l=query(lson,l_ran,r_ran);
}
if(r_ran>mid){
ret_r=query(rson,l_ran,r_ran);
}
return min(ret_l,ret_r);
}
void update(int rt,int L,int R,int pos,int val){
if(L==R){
minv[rt]=val;
return ;
}
if(pos<=mid){
update(lson,pos,val);
}else{
update(rson,pos,val);
}
PushUP(rt);
}
void debug(){
for(int i=1;i<16;i++)
printf("%d %d\n",i,minv[i]);
}
int main(){
int n,q,m,ans;
while(scanf("%d%d",&n,&q)!=EOF){
cnt=0;
build(1,1,n);
for(int i=0;i<q;i++){
scanf("%s",&str);
int len=strlen(str);
m= get_b(6,len);
if(str[0]=='q'){
ans=query(1,1,n,b[0],b[1]);
printf("%d\n",ans);
}else{
b[m]=b[0];
for(int i=0;i<m;i++){ //估计瞌睡了,这里迷糊了好久
update(1,1,n,b[i],a[b[i+1]-1]);
}
for(int i=0;i<m-1;i++){
exchange(b[i]-1,b[i+1]-1);
}
}
}
}
return 0;
}

  

nyoj 568——RMQ with Shifts——————【线段树单点更新、区间求最值】的更多相关文章

  1. TOJ 4325 RMQ with Shifts / 线段树单点更新

    RMQ with Shifts 时间限制(普通/Java):1000MS/3000MS     运行内存限制:65536KByte 描述 In the traditional RMQ (Range M ...

  2. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  3. POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)

    POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...

  4. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

  5. hdu 1166线段树 单点更新 区间求和

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  6. hdu1166(线段树单点更新&区间求和模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1166 题意:中文题诶- 思路:线段树单点更新,区间求和模板 代码: #include <iost ...

  7. hdu2795(线段树单点更新&区间最值)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 题意:有一个 h * w 的板子,要在上面贴 n 条 1 * x 的广告,在贴第 i 条广告时要 ...

  8. HDU 3308 LCIS(线段树单点更新区间合并)

    LCIS Given n integers. You have two operations: U A B: replace the Ath number by B. (index counting ...

  9. 【HDU】1754 I hate it ——线段树 单点更新 区间最值

    I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  10. hdu 1754 I Hate It 线段树 单点更新 区间最值

    线段树功能:update:单点更新 query:区间最值 #include <bits/stdc++.h> #define lson l, m, rt<<1 #define r ...

随机推荐

  1. Task async await

    暇之余,究多Task.async.await. using System; using System.Collections.Generic; using System.Linq; using Sys ...

  2. C语言编程基础

    主流C语言编译器介绍 关于GNU规范的语法扩展 用C语言构建一个可执行程序的流程 宏定义(无参宏定义和带参宏定义),C语言宏定义详解 条件编译,C语言条件编译详解 原码.反码.补码及位操作符,C语言位 ...

  3. 【转】远程桌面关闭后TeamViewer不能连接

    源地址:http://www.cnblogs.com/qk2014/p/9274852.html 1.本地安装TeamViewer,完成后如下: 2.远程服务器也安装TeamViewer 在本地Tea ...

  4. 【bzoj2813】 奇妙的Fibonacci数列 线性筛

    Description Fibonacci数列是这样一个数列: F1 = 1, F2 = 1, F3 = 2 . . . Fi = Fi-1 + Fi-2 (当 i >= 3) pty忽然对这个 ...

  5. 洛谷P3779 [SDOI2017]龙与地下城(概率论+Simpson+FFT)

    题面 传送门 题解 orz shadowice 正态分布 正态分布是随机变量\(X\)的一种概率分布形式.它用一个期望\(\mu\)和方差\(\sigma^2\)就可以描述,记为\(N(\mu,\si ...

  6. SDUT OJ 效率至上(线段树)

    效率至上 Time Limit: 5000 ms Memory Limit: 65536 KiB Submit Statistic Problem Description 题意很简单,给出一个数目为n ...

  7. nRF51822外设应用[2]:GPIOTE的应用-按键检测

    版权声明:本文为博主原创文章,转载请注明作者和出处.    作者:强光手电[艾克姆科技-无线事业部] 1. nRF51822寄存器类型 nRF51822的寄存器和一般的单片机有所差别,nRF51822 ...

  8. mysql sql知识总结

    SQL知识总结: 检索不同的行: SELECT DISTINCT VEND_ID FROM PRODUCTS; DISTINCT 应用于所有的列 =================== 限制结果: S ...

  9. angular-ui-select 下拉框支持过滤单选多选解决方案(系列一)

    angular-ui-select  官方文档:github地址:https://github.com/angular-ui/ui-select 请大家多看文档     首先注意版本的问题,如果版本不 ...

  10. EasyUI学习笔记(四)—— datagrid的使用

    一.传统的HTML表格 之前我们做表格的时候是这样写的: <table > <thead> <tr> <th>编号</th> <th& ...