POJ3177 边双连通分量
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 18580 | Accepted: 7711 |
Description
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output
Sample Input
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
Sample Output
2
Hint
One visualization of the paths is:
1 2 3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +
Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.
1 2 3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -
Check some of the routes:
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7
Every pair of fields is, in fact, connected by two routes.
It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.
Source
题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走。现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立的路。两条独立的路是指:没有公共边的路,但可以经过同一个中间顶点。
分析:在同一个边双连通分量中看做同一个点,缩点后,新图是一棵树,树的边就是原无向图的桥。
问题转化为:在树中至少添加多少条边能使图变为双连通图。
结论:添加边数=(树中度为1的节点数+1)/2
代码:
#include<cstdio>
#include<cstring>
#include "algorithm"
using namespace std;
const int N = + ;
const int M = + ;
struct P {
int to, nxt;
} e[M * ];
int head[N], low[N], dfn[N], beg[N], du[N], st[M], ins[M];
int cnt, id, top, num; void add(int u, int v) {
e[cnt].to = v;
e[cnt].nxt = head[u];
head[u] = cnt++;
} void tarjan(int u, int fa) {
low[u] = dfn[u] = ++id;
st[++top] = u;
ins[u] = ;
for (int i = head[u]; i != -; i = e[i].nxt) {
int v = e[i].to;
if (i == (fa ^ )) continue;
if (!dfn[v]) tarjan(v, i), low[u] = min(low[u], low[v]);
else if (ins[v]) low[u] = min(low[u], dfn[v]);
}
if (dfn[u] == low[u]) {
int v;
do {
v = st[top--];
ins[v] = ;
beg[v] = num;
} while (u != v);
num++;
}
} void init() {
cnt = id = top = num = ;
memset(head, -, sizeof(head));
memset(low, , sizeof(low));
memset(dfn, , sizeof(dfn));
memset(ins, , sizeof(ins));
memset(du, , sizeof(du));
} int n, m;
int main() {
scanf("%d%d", &n, &m);
init();
for (int i = ; i < m; i++){
int u, v;
scanf("%d%d", &u, &v);
add(u, v), add(v, u);
}
for (int i = ; i <= n; i++) if (!dfn[i]) tarjan(i, -);
for (int i = ; i <= n; i++) {
for (int j = head[i]; j != -; j = e[j].nxt){
int v = e[j].to;
if (beg[i] != beg[v]) du[beg[i]]++;
}
}
int ans = ;
for (int i = ; i < num; i++)
if (du[i] == ) ans++;
printf("%d\n", (ans + ) / );
return ;
}
POJ3177 边双连通分量的更多相关文章
- poj3177边-双连通分量
题意和poj3352一样..唯一区别就是有重边,预先判断一下就好了 #include<map> #include<set> #include<list> #incl ...
- poj3177 && poj3352 边双连通分量缩点
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12676 Accepted: 5368 ...
- POJ3177 Redundant Paths(边双连通分量+缩点)
题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...
- poj3177(边双连通分量+缩点)
传送门:Redundant Paths 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立 ...
- POJ3177 Redundant Paths 双连通分量
Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...
- poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解
题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...
- poj3177 Redundant Paths 边双连通分量
给一个无向图,问至少加入多少条边能够使图变成双连通图(随意两点之间至少有两条不同的路(边不同)). 图中的双连通分量不用管,所以缩点之后建新的无向无环图. 这样,题目问题等效于,把新图中度数为1的点相 ...
- POJ3177 Redundant Paths 图的边双连通分量
题目大意:问一个图至少加多少边能使该图的边双连通分量成为它本身. 图的边双连通分量为极大的不存在割边的子图.图的边双连通分量之间由割边连接.求法如下: 求出图的割边 在每个边双连通分量内Dfs,标记每 ...
- POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 12439 Acce ...
随机推荐
- Hadoop ->> Name node/Data node和Job tracker/Task tracker的区别
刚好看到关于Name node/Data node和Job tracker/Task tracker的解释,一开始有点混淆,以为说Job tracker必须运行在Name node上,他们俩有依赖或者 ...
- win10安装mxnet cuda9.0-gpu版
类似于上一篇文章 Anaconda3.6 python3.6.5 cuda9.0+ cudnn7.0 安装MXNet 1.设置清华源 conda config --prepend cha ...
- 如何使用Putty登录安装在VirtualBox里的ubuntu
我是在Windows操作系统里用VirtualBox安装了ubuntu操作系统. 在VirtualBox里操作ubuntu的终端不是很方便,比如我想在Windows里复制一些命令到ubuntu的终端执 ...
- python入门15 函数
函数的主要作用是实现代码复用 1 python内置函数 2 匿名函数lambda 3 自定义函数 def functionname(arg):... #coding:utf-8 #/usr/bin/p ...
- Git 还没push 前可以做的事(转)
Git 版本控制系統(3) 還沒 push 前可以做的事 转载:http://ihower.tw/blog/archives/2622 這一集要講的是:還沒 push 前可以做的壞事,也就是 re ...
- Python map/reduce/filter/sorted函数以及匿名函数
1. map() 函数的功能: map(f, [x1,x2,x3]) = [f(x1), f(x2), f(x3)] def f(x): return x*x a = map(f, [1, 2, 3, ...
- LA 4987 背包
题意: 有n个施工队,给定他们的位置,有m个防空洞,给定位置,求将施工队放到m个防空洞里面,最少的总距离? n<=4000 分析: dp[i][j] 前 i 个施工队,放到前 j 个防空洞里面的 ...
- Springmvc+Mybatis+Velocity实现小demo(Maven项目)
转:https://blog.csdn.net/FoolishAndStupid/article/details/52005934 Velocity只是充当一个展示层,和JSP的功能类似,利用myba ...
- Let’s Encrypt 最近很火的免费SSL 使用教程
2015年10月份,微博上偶然看到Let's Encrypt 推出了beta版,作为一个曾经被https虐出血的码农来说,这无疑是一个重磅消息.并且在全站Https的大趋势下,Let's Encryp ...
- POJ 1681 Painter's Problem 【高斯消元 二进制枚举】
任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS Memory Limit: 10000K Total ...