点此看题面

大致题意: 给你某些点的度数,其余点度数任意,让你求有多少种符合条件的无根树。

\(prufer\)序列

一道弱化版的题目:【洛谷2290】[HNOI2004] 树的计数

这同样也是一道利用\(prufer\)序列求解的题。

还是考虑到由\(prufer\)序列得到的结论:对于给定度数为\(d_{1\sim n}\)的一棵无根树共有\(\frac{(n-2)!}{\prod_{i=1}^n(d_i-1)!}\)种情况

但这次就不能直接套公式了。

推式子

考虑对于已知度数的点,设其个数为\(k\),且\(d_i-1\)的和为\(s\)。

然后对于这些已知的点,我们易得方案数为:

\[\frac{s!}{\sum_{i=1}^k(d_i-1)!}
\]

由于这\(k\)个点可以任选,因此还需乘上一个组合数,得到:

\[C_{n-2}^k\cdot\frac{s!}{\sum_{i=1}^k(d_i-1)!}
\]

则剩下的\(n-2-s\)个位置是可以任意排列的,而又共有\(n-k\)个点,因此总方案数为:

\[C_{n-2}^k\cdot\frac{s!}{\sum_{i=1}^k(d_i-1)!}*(n-k)^{n-2-s}
\]

然后就可以直接算了。

求解答案

\(Python\)大法好,无需高精度除法,也无需质因数分解\(23333\)。

代码

n=(int)(input());k=0;s=0;a=[0 for i in range (n+5)];#初始化
for i in range(1,n+1):
a[i]=(int)(input());
if a[i]==0:print(0);exit();#判断无解
if a[i]!=-1:k+=1;s+=a[i]-1;#统计k与s
if s>n-2:print(0);exit();#判断无解
f=[0 for i in range(n+5)];f[0]=1;#建立阶乘数组
for i in range(1,n+1):f[i]=f[i-1]*i;#预处理阶乘
ans=ans=(f[n-2]//f[s]//f[n-2-s])*f[s];#初始化ans为C(n-2,s)*s!
for i in range(1,n+1):
if a[i]!=-1:ans//=f[a[i]-1];#计算答案
print(ans*pow(n-k,n-2-s));#计算答案

【洛谷2624】[HNOI2008] 明明的烦恼(Python+利用prufer序列结论求解)的更多相关文章

  1. 【洛谷2290】[HNOI2004] 树的计数(Python+利用prufer序列结论求解)

    点此看题面 大致题意: 给定每个点的度数,让你求有多少种符合条件的无根树. \(prufer\)序列 这显然是一道利用\(prufer\)序列求解的裸题. 考虑到由\(prufer\)序列得到的结论: ...

  2. bzoj 1005: [HNOI2008]明明的烦恼 树的prufer序列+万进制

    题目传送门 思路: 这道题需要前置知识prufer编码,这篇博客对prufer编码和这道题的分析写的很好. 这里主要讲一些对大数阶乘的分解,一个办法当然是用高精度,上面这篇博客用的是java,还有一个 ...

  3. 【洛谷2624_BZOJ1005】[HNOI2008] 明明的烦恼(Prufer序列_高精度_组合数学)

    题目: 洛谷2624 分析: 本文中所有的 "树" 都是带标号的. 介绍一种把树变成一个序列的工具:Prufer 序列. 对于一棵 \(n\) 个结点的树,每次选出一个叶子(度数为 ...

  4. 【BZOJ1005】[HNOI2008]明明的烦恼(prufer序列)

    [BZOJ1005][HNOI2008]明明的烦恼(prufer序列) 题面 BZOJ 洛谷 题解 戳这里 #include<iostream> #include<cstdio> ...

  5. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  6. bzoj1005 [HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description ...

  7. 【bzoj1005】[HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4175  Solved: 1660[Submit][Stat ...

  8. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

随机推荐

  1. PIE SDK彩色标准化融合

    1.算法功能简介 色彩标准化融合对彩色图像和高分辨率图像进行数学合成,从而使图像得到锐化.色彩归一化变换也被称为能量分离变换( Energy Subdivision Transform),它使用来自融 ...

  2. python学习8-闭包、迭代器(转载)

    一.第一类对象: 函数名是一个变量,可以当普通变量使用,但它又是一个特殊的变量,与括号配合可以执行函数. 函数名的运用 1.单独打印是一个内存地址 2.可以给其他变量赋值 3.可以作为容器类变量的元素 ...

  3. $bzoj1007-HAOI2008$ 水平可见直线 下凸包

    题面描述 在\(xOy\)直角坐标平面上有\(n\)条直线\(L_1,L_2,...,L_n\),若在\(y\)值为正无穷大处往下看,能见到\(L_i\)的某个子线段,则称\(L_i\)为可见的,否则 ...

  4. VUE-CLI 设置页面title

    router > index.js { path: '/worklist', name: 'worklist', component: worklist, meta: {title:'维修工列表 ...

  5. shell的常用脚本一

    批量创建用户名脚本: ######################################################################### # File Name: cr ...

  6. opengl键盘回调函数不能获取Ctrl+c的问题

    我要令窗口在按下 Ctrl+c 之后关闭. 关键代码如下: /* 这段代码位于键盘回调函数中 */ if ((glutGetModifiers() == GLUT_ACTIVE_CTRL) & ...

  7. filter get乱码 全站编码解决 包装模式

    包装模式简介: package com.itheima.test; import java.io.BufferedReader; import java.io.IOException; import ...

  8. [Matlab] awgn

    Y = awgn(X,SNR,SIGPOWER) when SIGPOWER is numeric, it represents the signal power in dBW. When SIGPO ...

  9. HDU 1394——Minimum Inversion Number——————【线段树单点增减、区间求和】

    Minimum Inversion Number Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & ...

  10. git提交代码报错 trailing whitespace的解决方法

    1. git提交代码报错 trailing whitespace 禁止执行pre-commit脚本 进入到项目目录中 chmod a-x .git/hooks/pre-commit 2.git提交代码 ...