Coherence在extend模式下,proxy的负载均衡机制官方解释是

Extend client connections are load balanced across proxy service members. By default, a proxy-based strategy is used that distributes client connections to proxy service members that are being utilized the least. Custom proxy-based strategies can be created or the default strategy can be modified as required. As an alternative, a client-based load balance strategy can be implemented by creating a client-side address provider or by relying on randomized client connections to proxy service members. The random approach provides minimal balancing as compared to proxy-based load balancing.

Proxy-based load balancing is the default strategy that is used to balance client connections between two or more members of the same proxy service. The strategy is weighted by a proxy's existing connection count, then by its daemon pool utilization, and lastly by its message backlog.

The proxy-based load balancing strategy is configured within a <proxy-scheme> definition using a <load-balancer> element that is set to proxy. For clarity, the following example explicitly specifies the strategy. However, the strategy is used by default if no strategy is specified and is not required in a proxy scheme definition.

说的比较模糊,在weblogic作为前端来连入后台coherence cluster的情况下,我们模拟实际的生产环境,看一看实际的运作

针对proxy节点的proxy-override.xml

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">
<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>distributed-scheme</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<!-- Distributed caching scheme. -->
<distributed-scheme>
<scheme-name>distributed-scheme</scheme-name>
<service-name>DistributedCache</service-name>
<thread-count>50</thread-count>
<backup-count>1</backup-count>
<backing-map-scheme>
<local-scheme>
<scheme-name>LocalSizeLimited</scheme-name>
</local-scheme>

</backing-map-scheme>
<autostart>true</autostart>
<local-storage>false</local-storage>
</distributed-scheme>
<local-scheme>
<scheme-name>LocalSizeLimited</scheme-name>
<eviction-policy>LRU</eviction-policy>
<high-units>500</high-units>
<unit-calculator>BINARY</unit-calculator>
<unit-factor>1048576</unit-factor>
<expiry-delay>48h</expiry-delay>
</local-scheme>

<proxy-scheme>
<service-name>ExtendTcpProxyService</service-name>
<thread-count>10</thread-count>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>192.168.0.101</address>
<port>9099</port>
</local-address>
</tcp-acceptor>
</acceptor-config>
<load-balancer>proxy</load-balancer>
<autostart>true</autostart>
</proxy-scheme>

</caching-schemes>
</cache-config>

针对storage节点的storage-override.xml

<?xml version="1.0"?>

<cache-config>

<caching-scheme-mapping>
<!--
Caches with names that start with 'DBBacked' will be created
as distributed-db-backed.
-->
<cache-mapping>
<cache-name>POFSample</cache-name>
<scheme-name>distributed-pof</scheme-name>
</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<!--
DB Backed Distributed caching scheme.
-->
<distributed-scheme>
<scheme-name>distributed-pof</scheme-name>
<service-name>DistributedCache</service-name>
<thread-count>50</thread-count>
<backing-map-scheme> <local-scheme/> </backing-map-scheme>

<listener/>
<autostart>true</autostart>
<local-storage>true</local-storage>
</distributed-scheme>
</caching-schemes>
</cache-config>

针对客户端的client.xml

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">
<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>extend-dist</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<remote-cache-scheme>
<scheme-name>extend-dist</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>192.168.0.101</address>
<port>9100</port>
</socket-address>
<socket-address>
<address>192.168.0.101</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>10s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

另外一个客户端的配置文件client-2.xml

<?xml version="1.0"?>
<!DOCTYPE cache-config SYSTEM "cache-config.dtd">
<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>extend-dist</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<remote-cache-scheme>
<scheme-name>extend-dist</scheme-name>
<service-name>ExtendTcpCacheService2</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>192.168.0.101</address>
<port>9099</port>
</socket-address>
<socket-address>
<address>192.168.0.101</address>
<port>9100</port>
</socket-address>
</remote-addresses>
<connect-timeout>10s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

通过proxy-server.cmd启动两个proxy节点,会监听在9099和9100端口

"%java_exec%" -server -showversion -Dtangosol.coherence.mode=prod -Dtangosol.coherence.management.remote=true -Dtangosol.coherence.cacheconfig=E:\wls12c\coherence\bin\proxy-override.xml %java_opts% -cp "%coherence_home%\lib\coherence.jar" com.tangosol.net.DefaultCacheServer %*

通过storage-cmd启动一个storage节点

"%java_exec%" -server -showversion -Dtangosol.coherence.mode=prod -Dtangosol.coherence.management.remote=true -Dtangosol.coherence.management=all %java_opts% -Dtangosol.coherence.cacheconfig=E:\wls12c\coherence\bin\storage-override.xml -cp "%coherence_home%\lib\coherence.jar" com.tangosol.net.DefaultCacheServer %*

在weblogic的setDomainEnv.cmd文件中加入

set JAVA_OPTIONS=%JAVA_OPTIONS% -Dtangosol.coherence.cacheconfig="E:\wls12c\coherence\bin\client.xml" -Dtangosol.coherence.tcmp.enabled=false

set CLASSPATH=E:\wls1212\coherence\lib\coherence.jar;%CLASSPATH%

然后部署一个web应用,核心是一个jsp文件coput.jsp,批量放入10000个对象

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@page import="java.util.*"%>
<%@page import="com.tangosol.net.*"%>

<%@ page contentType="text/html;charset=windows-1252"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252"/>
<title>setName</title>
</head>
<html>
<body>
<h3>

<%
String mysession;
//private final ClassLoader loader = null;
NamedCache cache12;
cache12 = CacheFactory.getCache("POFSample");

for (int i=0;i<10000;i++) {
//String key = "hello";
cache12.put (i, "CacheValue=eric"+i);
}

%>
put 10000 records success.........
</h3>

</body>
</html>

启动weblogic访问,主要连到了9099的proxy server

没有压力的时候,通过jvisualvm监控的proxy的线程如下,可以看到有每个都有10个空闲线程:

通过jmeter运行20个线程的压力,压力主要压在weblogic server

压力上来时候线程如下

可以看到当空闲线程为0,并且有6个在backlog等待时,都没有分到另外一个proxy.

结论如下:

  • Coherence将weblogic server的一个实例当成是一个客户端,并不是基于这个客户端内部的thread进行负载均衡(这不是bug,而是产品设计如此)
  • WebLogic Server和Coherence建立的是长连接,除非在超时时间外没有线程访问会断开,在压力比较大的时候,weblogic server会一直用这个连接,并不管这个连接是否已经用完。
  • Proxy设置的线程数是有限的,最大512条,proxy占用的资源也是有限的,在压力大的时候可能这个proxy会缓慢甚至挂掉,所以最好的办法还是要把压力分散到不同的proxy上面去。
  • 但当多个weblogic实例上来时会进行负载均衡。严格来说,coherence集群是按照client端的NIC和port进行负载均衡的。

修改coput.jsp如下:

也就是会根据不同的thread id,选择加载不同的xml,实现均分。

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@page import="java.util.*"%>
<%@page import="com.tangosol.net.*"%>

<%@ page contentType="text/html;charset=windows-1252"%>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252"/>
<title>setName</title>
</head>
<html>
<body>
<h3>

<%
String mysession;
//private final ClassLoader loader = null;
NamedCache cache12;
ConfigurableCacheFactory factory1 = null;
int threadid = (int)Thread.currentThread().getId();
System.out.println("Thread id="+ threadid);
if ((threadid % 2) == 0) {
factory1 = new DefaultConfigurableCacheFactory("E:\\wls12c\\coherence\\bin\\client-2.xml", Thread.currentThread().getClass().getClassLoader());
} else {
factory1 = new DefaultConfigurableCacheFactory("E:\\wls12c\\coherence\\bin\\client.xml", Thread.currentThread().getClass().getClassLoader());
}
cache12 = factory1.ensureCache("POFSample", Thread.currentThread().getClass().getClassLoader());

for (int i=0;i<10000;i++) {
//String key = "hello";
cache12.put (i, "CacheValue=eric"+i);
}

%>
put 10000 records success.........
</h3>

</body>
</html>

再次进行压力测试,如下:

可以看到压力以及分在两个proxy上.

后台weblogic日志,在根据threadid调用.

Coherence代理的负载均衡的更多相关文章

  1. Windos环境用Nginx配置反向代理和负载均衡

    Windos环境用Nginx配置反向代理和负载均衡 引言:在前后端分离架构下,难免会遇到跨域问题.目前的解决方案大致有JSONP,反向代理,CORS这三种方式.JSONP兼容性良好,最大的缺点是只支持 ...

  2. Nginx反向代理,负载均衡,redis session共享,keepalived高可用

    相关知识自行搜索,直接上干货... 使用的资源: nginx主服务器一台,nginx备服务器一台,使用keepalived进行宕机切换. tomcat服务器两台,由nginx进行反向代理和负载均衡,此 ...

  3. Nginx服务器 之反向代理与负载均衡

    一.反向代理 正向代理: 客户端要获取的资源就在服务器上,客户端请求的资源路径就是最终响应资源的服务器路径,这就是正向代理.正向代理的特点:就是我们明确知道要访问哪个网站地址. 反向代理: 客户端想获 ...

  4. Nginx 反向代理、负载均衡、页面缓存、URL重写及读写分离详解

    转载:http://freeloda.blog.51cto.com/2033581/1288553 大纲 一.前言 二.环境准备 三.安装与配置Nginx 四.Nginx之反向代理 五.Nginx之负 ...

  5. Tomcat:利用Apache配置反向代理、负载均衡

    本篇主要介绍apache配置反向代理,介绍了两种情况:第一种是,只使用apache配置反向代理:第二种是,apache与应用服务器(tomcat)结合,配置反向代理,同时了配置了负载均衡. 准备工作 ...

  6. 通过Nginx+tomcat+redis实现反向代理 、负载均衡及session同步

    一直对于负载均衡比较陌生,今天尝试着去了解了一下,并做了一个小的实验,对于这个概念有一些认识,在此做一个简单的总结 什么是负载均衡 负载均衡,英文 名称为Load Balance,指由多台服务器以对称 ...

  7. nginx的反向代理和负载均衡的一个总结

    之前一直觉的nginx的反向代理和负载均衡很厉害的样子,最近有机会接触了一下公司的这方面的技术,发现技术就是一张窗户纸呀,捅破了啥都明白了! 接下来先看一下nginx的反向代理: 简单的来说就是ngi ...

  8. Nginx反向代理、负载均衡、页面缓存、URL重写及读写分离详解

    大纲 一.前言 二.环境准备 三.安装与配置Nginx 四.Nginx之反向代理 五.Nginx之负载均衡 六.Nginx之页面缓存 七.Nginx之URL重写 八.Nginx之读写分离 注,操作系统 ...

  9. nginx和tomcat实现反向代理、负载均衡和session共享

    这类的文章很多,nginx和tomcat实现反向代理.负载均衡实现很容易,可以参照http://blog.csdn.net/liuzhigang1237/article/details/8880752 ...

随机推荐

  1. 12.22笔记(关于CALayer//Attributes//CALayer绘制图层//CALayer代理绘图//CALayer动画属性//CALayer自定义子图层//绘图pdf文件//绘图渐变效果)

    12.22笔记 pdf下载文件:https://www.evernote.com/shard/s227/sh/f81ba498-41aa-443b-81c1-9b569fcc34c5/f033b89a ...

  2. bzoj 2245 费用流

    比较裸 源点连人,每个人连自己的工作,工作连汇,然后因为人的费用是 分度的,且是随工作数非降的,所以我们拆边,源点连到每个人s+1条边 容量是每段的件数,费用是愤怒 /**************** ...

  3. 一致性hash与CRUSH算法总结

    相同之处:都解决了数据缓存系统中数据如何存储与路由. 不同之处:区别在于虚拟节点和物理节点的映射办法不同 由于一般的哈希函数返回一个int(32bit)型的hashCode.因此,可以将该哈希函数能够 ...

  4. algorithm ch2 Merge_sort

    这是用分治法来对序列进行排序,将较长的一个序列分解为n个比较短的序列,然后分别处理这n个较小的段序列,最后合并.使用递归的来实现. 具体实现的代码如下: void MergeSort(int *A, ...

  5. (转)Git冲突:commit your changes or stash them before you can merge. 解决办法

    用git pull来更新代码的时候,遇到了下面的问题: error: Your local changes to the following files would be overwritten by ...

  6. objc_msgSend arm64 崩溃问题

    http://blog.csdn.net/chenyong05314/article/details/42121001 2014-12-24 10:49 878人阅读 评论(0) 收藏 举报 转载自: ...

  7. python基础===取txt文件的若干行到另一个文件

    #取txt文件 的若干行到另一个txt f1 = open(r'F:\movie.txt','rb') f2= open(r'F:\movie2.txt','ab') i=0 while True: ...

  8. python基础===修改idle的输入风格

    http://blog.csdn.net/aq_cainiao_aq/article/details/51701861

  9. python--celery

    有些时候我们的一些任务比较耗时,比如我们写了一个网站,用户注册的时候需要发送邮件.但是发送邮件的过程比较耗时,用户必须要等到我们将邮件发送成功之后才会得到响应.那么有没有一种办法,当用户点击发送邮件的 ...

  10. Ubunt 服务教程集锦

    1.Ubuntu管理服务安装(强烈推荐最好用Xshell和Xftp): 序号 服务名 介绍 教程地址 windows客户端 1 VNC 可以图形界面管理Ubuntu ubuntu安装vncserver ...